summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--exercise02/exercise02.tex348
-rw-r--r--main/exercise02.tex5
2 files changed, 345 insertions, 8 deletions
diff --git a/exercise02/exercise02.tex b/exercise02/exercise02.tex
index 580ac67..db2fa8c 100644
--- a/exercise02/exercise02.tex
+++ b/exercise02/exercise02.tex
@@ -107,11 +107,13 @@
\task
\begin{equation*}
x(t) = \begin{cases}
- \SI{-0.2}{V}, &\quad \text{ if} \; \left(\SI{-0.5}{s} + n \cdot \SI{2}{s}\right) \leq t < \left(\SI{0.5}{s} + n \cdot \SI{2}{s}\right) \\
- \SI{-0.2}{V}, &\quad \text{ if} \; \left(\SI{0.5}{s} + n \cdot \SI{2}{s}\right) \leq t < \left(\SI{1.5}{s} + n \cdot \SI{2}{s}\right) \\
+ \SI{0.8}{V}, &\quad \text{ if} \; \left(-\frac{T_0}{4} + n \cdot T_0\right) \leq t < \left(\frac{T_0}{4} + n \cdot T_0\right) \\
+ \SI{-0.2}{V}, &\quad \text{ if} \; \left(\frac{T_0}{4} + n \cdot T_0\right) \leq t < \left(\frac{3T_0}{4} + n \cdot T_0\right) \\
\end{cases} \qquad \forall \; n \in \mathbb{Z}
\end{equation*}
+ with $T_0 = \SI{2}{s}$
+
\task
\begin{itemize}
\item Period: $T_0 = \SI{2}{s}$
@@ -119,6 +121,207 @@
\item Base angular frequency: $\omega_0 = \SI{3.14}{s^{-1}}$
\end{itemize}
+ \task
+ \begin{equation*}
+ \begin{split}
+ a_n &= \frac{2}{T_0} \left( \int\limits_{-\frac{T_0}{4}}^{\frac{T_0}{4}} \SI{0.8}{V} \cdot \cos\left(n\frac{2\pi}{T_0}t\right) \, \mathrm{d} t - \int\limits_{\frac{T_0}{4}}^{\frac{3T_0}{4}} \SI{0.2}{V} \cdot \cos\left(n\frac{2\pi}{T_0}t\right) \, \mathrm{d} t \right) \\
+ &= \frac{2}{T_0} \frac{T_0}{2 \pi n} \left( \SI{0.8}{V} \cdot \left[\sin\left(n\frac{2\pi}{T_0}t\right)\right]_{-\frac{T_0}{4}}^{\frac{T_0}{4}} - \SI{0.2}{V} \cdot \left[\sin\left(n\frac{2\pi}{T_0}t\right)\right]_{\frac{T_0}{4}}^{\frac{3T_0}{4}} \right) \\
+ &= \frac{1}{\pi n} \left(
+ \SI{0.8}{V} \cdot \left(
+ \sin\left(\frac{\pi}{2}n\right)
+ - \underbrace{\sin\left(-\frac{\pi}{2}n\right)}_{= \sin\left(\frac{\pi}{2}n\right)}
+ \right)
+ - \SI{0.2}{V} \cdot \left(
+ \underbrace{\sin\left(\frac{3\pi}{2}n\right)}_{= \sin\left(\frac{\pi}{2}n\right)}
+ - \sin\left(\frac{\pi}{2}n\right)
+ \right)
+ \right) \\
+ &= \frac{2}{\pi n} \left( \SI{0.8}{V} \cdot \sin\left(\frac{\pi}{2}n\right) - \SI{0.2}{V} \cdot \sin\left(\frac{\pi}{2}n\right) \right) \\
+ &= \frac{\SI{2,0}{V}}{\pi n} \cdot \sin\left(\frac{\pi}{2}n\right) \\
+ &= \begin{cases}
+ \frac{\SI{2,0}{V}}{\pi n} (-1)^{\frac{n+3}{2}} &\quad \; \forall n \text{ odd}, \\
+ 0 &\quad \; \forall n \text{ even}.
+ \end{cases}
+ \end{split}
+ \end{equation*}
+
+ $a_0$ (DC bias) needs special treatment.
+ \begin{equation*}
+ \begin{split}
+ a_0 &= \frac{1}{T_0} \left( \int\limits_{-\frac{T_0}{4}}^{\frac{T_0}{4}} \SI{0.8}{V} \, \mathrm{d} t - \int\limits_{\frac{T_0}{4}}^{\frac{3T_0}{4}} \SI{0.2}{V} \, \mathrm{d} t \right) \\
+ &= \frac{1}{T_0} \left( \SI{0.8}{V} \cdot \left[t\right]_{-\frac{T_0}{4}}^{\frac{T_0}{4}} - \SI{0.2}{V} \cdot \left[t\right]_{\frac{T_0}{4}}^{\frac{3T_0}{4}} \right) \\
+ &= \frac{1}{T_0} \left( \SI{0.8}{V} \cdot \left(\frac{T_0}{4} - \left(-\frac{T_0}{4}\right)\right) - \SI{0.2}{V} \cdot \left(\frac{3T_0}{4} - \frac{T_0}{4}\right) \right) \\
+ &= \frac{1}{T_0} \left( \SI{0.8}{V} \cdot \frac{T_0}{2} - \SI{0.2}{V} \cdot \frac{T_0}{2} \right) \\
+ &= \SI{0.3}{V}
+ \end{split}
+ \end{equation*}
+
+ \begin{equation*}
+ \begin{split}
+ b_n &= \frac{2}{T_0} \left( \int\limits_{-\frac{T_0}{4}}^{\frac{T_0}{4}} \SI{0.8}{V} \cdot \sin\left(n\frac{2\pi}{T_0}t\right) \, \mathrm{d} t - \int\limits_{\frac{T_0}{4}}^{\frac{3T_0}{4}} \SI{0.2}{V} \cdot \sin\left(n\frac{2\pi}{T_0}t\right) \, \mathrm{d} t \right) \\
+ &= \frac{2}{T_0} \frac{T_0}{2 \pi n} \left( \SI{0.8}{V} \cdot \left[-\cos\left(n\frac{2\pi}{T_0}t\right)\right]_{-\frac{T_0}{4}}^{\frac{T_0}{4}} - \SI{0.2}{V} \cdot \left[-\cos\left(n\frac{2\pi}{T_0}t\right)\right]_{\frac{T_0}{4}}^{\frac{3T_0}{4}} \right) \\
+ &= \frac{1}{\pi n} \left(
+ \SI{0.8}{V} \cdot \left(
+ -\cos\left(\frac{\pi}{2}n\right)
+ + \underbrace{\cos\left(-\frac{\pi}{2}n\right)}_{= \cos\left(\frac{\pi}{2}n\right)}
+ \right)
+ - \SI{0.2}{V} \cdot \left(
+ -\underbrace{\cos\left(\frac{3\pi}{2}n\right)}_{= \cos\left(\frac{\pi}{2}n\right)}
+ + \cos\left(\frac{\pi}{2}n\right)
+ \right)
+ \right) \\
+ &= 0
+ \end{split}
+ \end{equation*}
+
+ \task
+ $\underline{c}_n$:
+ \begin{equation*}
+ \begin{split}
+ b_n &= \frac{1}{T_0} \left( \int\limits_{-\frac{T_0}{4}}^{\frac{T_0}{4}} \SI{0.8}{V} \cdot e^{-j n\frac{2\pi}{T_0}t} \, \mathrm{d} t - \int\limits_{\frac{T_0}{4}}^{\frac{3T_0}{4}} \SI{0.2}{V} \cdot e^{-j n\frac{2\pi}{T_0}t} \, \mathrm{d} t \right) \\
+ &= \frac{1}{T_0} \frac{T_0}{2 \pi n (-j)} \left(
+ \SI{0.8}{V} \cdot \left[e^{-j n\frac{2\pi}{T_0}t}\right]_{-\frac{T_0}{4}}^{\frac{T_0}{4}}
+ - \SI{0.2}{V} \cdot \left[e^{-j n\frac{2\pi}{T_0}t}\right]_{\frac{T_0}{4}}^{\frac{3T_0}{4}}
+ \right) \\
+ &= j \frac{1}{2 \pi n} \left(
+ \SI{0.8}{V} \left(
+ e^{-j n\frac{\pi}{2}}
+ - e^{+j n\frac{\pi}{2}}
+ \right)
+ - \SI{0.2}{V} \left(
+ e^{-j n\frac{3 \pi}{2}}
+ - e^{-j n\frac{\pi}{2}}
+ \right)
+ \right) \\
+ &= \begin{cases}
+ \frac{\SI{1,0}{V}}{\pi n} e^{j\frac{n+3}{2}\pi} &\quad \; \forall n \text{ odd}, \\
+ 0 &\quad \; \forall n \text{ even}.
+ \end{cases}
+ \end{split}
+ \end{equation*}
+ Following has been used:
+ \begin{equation*}
+ \begin{split}
+ \left(e^{-j n\frac{\pi}{2}} - e^{+j n\frac{\pi}{2}}\right) &= \begin{cases}
+ -j &\quad \forall n = 4 k + 1, k \in \mathbb{Z}, \\
+ +j &\quad \forall n = 4 k + 3, k \in \mathbb{Z}, \\
+ 0 &\quad \forall n = 2 k, k \in \mathbb{Z}.
+ \end{cases} \\
+ \left(e^{-j n\frac{3 \pi}{2}} - e^{-j n\frac{\pi}{2}}\right) &= \begin{cases}
+ +j &\quad \forall n = 4 k + 1, k \in \mathbb{Z}, \\
+ -j &\quad \forall n = 4 k + 3, k \in \mathbb{Z}, \\
+ 0 &\quad \forall n = 2 k, k \in \mathbb{Z}.
+ \end{cases}
+ \end{split}
+ \end{equation*}
+
+ \task
+ \begin{figure}[H]
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.25\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$n$},
+ ylabel={$\left|\underline{c}_n\right| in \si{V}$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-5.5,
+ xmax=5.5,
+ xtick={-5, -4, ..., 5},
+ ymin=0,
+ ymax=0.45,
+ ytick={0, 0.1, ..., 0.4}
+ ]
+ \addplot[red, thick] coordinates {(-5,0) (-5,0.064)};
+ \addplot[red, thick] coordinates {(-3,0) (-3,0.106)};
+ \addplot[red, thick] coordinates {(-1,0) (-1,0.318)};
+ \addplot[red, thick] coordinates {(0,0) (0,0.3)};
+ \addplot[red, thick] coordinates {(1,0) (1,0.318)};
+ \addplot[red, thick] coordinates {(3,0) (3,0.106)};
+ \addplot[red, thick] coordinates {(5,0) (5,0.064)};
+
+ \addplot[red, thick, only marks, mark=o] coordinates {(-5,0.064)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(-4,0)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(-3,0.106)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(-2,0)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(-1,0.318)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(0,0.3)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(1,0.318)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(2,0)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(3,0.106)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(4,0)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(5,0.064)};
+ \end{axis}
+ \end{tikzpicture}
+ \end{figure}
+
+ \begin{figure}[H]
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.25\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$\omega \text{ in } \si{s^{-1}}$},
+ ylabel={$\left|\underline{H}\left(j \omega\right)\right|$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-5.5,
+ xmax=5.5,
+ ymin=-3.5,
+ ymax=3.5,
+ ytick={-3.14159, -1.5708, 1.5708, 3.14159},
+ yticklabels={$-\pi\hspace{0.30cm}$, $-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\pi\hspace{0.10cm}$},
+ ]
+ \addplot[red, thick] coordinates {(-5,0) (-5,0)};
+ \addplot[red, thick] coordinates {(-3,0) (-3,-3.14159)};
+ \addplot[red, thick] coordinates {(-1,0) (-1,0)};
+ \addplot[red, thick] coordinates {(0,0) (0,0)};
+ \addplot[red, thick] coordinates {(1,0) (1,0)};
+ \addplot[red, thick] coordinates {(3,0) (3,3.14159)};
+ \addplot[red, thick] coordinates {(5,0) (5,0)};
+
+ \addplot[red, thick, only marks, mark=o] coordinates {(-5,0)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(-4,0)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(-3,-3.14159)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(-2,0)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(-1,0)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(0,0)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(1,0)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(2,0)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(3,3.14159)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(4,0)};
+ \addplot[red, thick, only marks, mark=o] coordinates {(5,0)};
+ \end{axis}
+ \end{tikzpicture}
+ \end{figure}
+
%TODO
\end{tasks}
\end{solution}
@@ -238,7 +441,7 @@
height={0.25\textheight},
width=0.9\linewidth,
scale only axis,
- xlabel={$\omega \text{ in } \si{Hz}$},
+ xlabel={$\omega \text{ in } \si{s^{-1}}$},
ylabel={$\left|\underline{X}\left(j \omega\right)\right| \text{ in } \si{V/Hz}$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
@@ -278,7 +481,7 @@
height={0.25\textheight},
width=0.9\linewidth,
scale only axis,
- xlabel={$\omega \text{ in } \si{Hz}$},
+ xlabel={$\omega \text{ in } \si{s^{-1}}$},
ylabel={$\arg\left(\underline{X}\left(j \omega\right)\right) \text{ in } \si{\degree}$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
@@ -343,7 +546,64 @@
\end{question}
\begin{solution}
- %TODO
+ \begin{tasks}
+ \task
+ Network analysis:
+ \begin{figure}[H]
+ \centering
+ \begin{circuitikz}
+ \draw (0, 0) to[L, l=$L$, v=$u_L(t)$, i=$i_C(t)$, o-] ++(2,0) to[short, i=$i_o(t)$, *-o] ++(2,0);
+ \draw (2, 0) to[C, l=$C$, i=$i_C(t)$, -*] ++(0,-2);
+ \draw (0, -2) to[short, o-o] ++(4,0);
+
+ \draw (0, 0) to[open, v=$u_i(t)$] (0, -2);
+ \draw (4, 0) to[open, v^=$u_o(t)$] (4, -2);
+ \end{circuitikz}
+ \end{figure}
+ \begin{itemize}
+ \item Kirchhoff's current law at the only point in the circuit:
+ \begin{equation*}
+ i_L(t) = i_C(t) + i_o(t)
+ \end{equation*}
+ \item No load at the output: $i_o(t) = 0$
+ \item Kirchhoff's coltage law at the only closed loop in the circuit:
+ \begin{equation*}
+ u_i(t) = u_L(t) + u_o(t)
+ \end{equation*}
+ \item Differential equation for capacitors:
+ \begin{equation*}
+ i_C(t) = C \frac{\mathrm{d} u_o(t)}{\mathrm{d} t}
+ \end{equation*}
+ \item Differential equation for inductors:
+ \begin{equation*}
+ u_L(t) = L \frac{\mathrm{d} u_L(t)}{\mathrm{d} t} = L C \frac{\mathrm{d}^2 u_o(t)}{\mathrm{d} t^2}
+ \end{equation*}
+ \end{itemize}
+ Finally,
+ \begin{equation*}
+ u_i(t) = L C \frac{\mathrm{d}^2 u_o(t)}{\mathrm{d} t^2} + u_o(t)
+ \end{equation*}
+
+ \task
+ \begin{equation*}
+ \begin{split}
+ u_i(t) &= L C \frac{\mathrm{d}^2 u_o(t)}{\mathrm{d} t^2} + u_o(t) \\
+ \underline{U}_i \left(j \omega\right) &= \left( \left(j \omega\right)^2 L C + 1 \right) \underline{U}_o \left(j \omega\right)
+ \end{split}
+ \end{equation*}
+ \begin{equation*}
+ \begin{split}
+ \underline{H} \left(j \omega\right) &= \frac{\underline{U}_o \left(j \omega\right)}{\underline{U}_i \left(j \omega\right)} \\
+ &= \frac{1}{\left(j \omega\right)^2 L C + 1}
+ \end{split}
+ \end{equation*}
+
+ \task
+ Yes, this is a real circuit which can be implemented with electronic components. Real components do not have knowledge of the future.
+
+ \task
+ Second order low pass filter
+ \end{tasks}
\end{solution}
\begin{question}[subtitle={Amplitude and Phase Response}]
@@ -430,6 +690,40 @@
\end{split}
\end{equation*}
+ \begin{figure}[H]
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.25\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$\omega \text{ in } \si{s^{-1}}$},
+ ylabel={$\left|\underline{H}\left(j \omega\right)\right|$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-21e3,
+ xmax=21e3,
+ ymin=0,
+ ymax=1.2,
+ ytick={0, 0.5, 1}
+ ]
+ \addplot[blue, thick, smooth, domain=-20e3:20e3, samples=100] plot (\x, {sqrt( (4.7e-5 * \x)^2 / ((4.7e-5 * \x)^2 + 1) )});
+ \end{axis}
+ \end{tikzpicture}
+ \end{figure}
+
\task
\begin{equation*}
\begin{split}
@@ -446,6 +740,48 @@
\end{split}
\end{equation*}
+ \begin{figure}[H]
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.25\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$\omega \text{ in } \si{s^{-1}}$},
+ ylabel={$\left|\underline{H}\left(j \omega\right)\right|$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-21e3,
+ xmax=21e3,
+ %ymin=-3.5,
+ %ymax=3.5,
+ %ytick={-3.14159, -1.5708, 1.5708, 3.14159},
+ %yticklabels={$-\pi\hspace{0.30cm}$, $-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\pi\hspace{0.10cm}$},
+ %yticklabels={$\SI{-180}{\degree}$, $\SI{-90}{\degree}$, $\SI{90}{\degree}$, $\SI{180}{\degree}$},
+ ymin=-1.7,
+ ymax=1.7,
+ ytick={-1.5708, 1.5708},
+ yticklabels={$\SI{-90}{\degree}$, $\SI{90}{\degree}$},
+ ]
+ %\addplot[blue, thick, smooth, domain=-20e3:20e3, samples=100] plot (\x, {(2*pi/360) * atan2(((4.7e-05*\x)/((4.7e-05*\x)^2+1)), ((4.7e-05)^2/((4.7e-05*\x)^2+1)))});
+ \addplot[blue, thick, smooth, domain=1:20e3, samples=50] plot (\x, {(2*pi/360) * atan(1/((4.7e-5)*\x))});
+ \addplot[blue, thick, smooth, domain=-20e3:-1, samples=50] plot (\x, {(2*pi/360) * atan(1/((4.7e-5)*\x))});
+ \end{axis}
+ \end{tikzpicture}
+ \end{figure}
+
\task
\begin{equation*}
\underline{U}_i\left(j \omega\right) = \mathcal{F}\left\{u_i(t)\right\} = \SI{2}{V} \pi \left(\delta\left(\omega - 2 \pi \cdot \SI{2.5}{kHz}\right) + \delta\left(\omega + 2 \pi \cdot \SI{2.5}{kHz}\right)\right)
@@ -463,7 +799,5 @@
u_o(t) = \mathcal{F}^{-1}\left\{\underline{U}_i\left(j \omega\right)\right\} = \SI{1.19}{V} \cdot \cos\left(2 \pi \cdot \SI{2.5}{kHz} \cdot t - \SI{53.6}{\degree}\right)
\end{equation*}
The signal has been attenuated and phase-shifted.
-
- %TODO
\end{tasks}
\end{solution}
diff --git a/main/exercise02.tex b/main/exercise02.tex
index 05a4d0d..9591b77 100644
--- a/main/exercise02.tex
+++ b/main/exercise02.tex
@@ -43,7 +43,10 @@
\begin{appendix}
-%\include{appendix/crlb}
+\chapter{Solutions}
+
+\printsolutions
+\clearpage
\end{appendix}