summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--chapter02/content_ch02.tex2
-rw-r--r--chapter03/content_ch03.tex2
-rw-r--r--chapter04/content_ch04.tex8
3 files changed, 6 insertions, 6 deletions
diff --git a/chapter02/content_ch02.tex b/chapter02/content_ch02.tex
index dbcbf62..9996706 100644
--- a/chapter02/content_ch02.tex
+++ b/chapter02/content_ch02.tex
@@ -1105,7 +1105,7 @@ This equation resembles \eqref{eq:ch02:def_inv_fourier_transform}.
An example for the duality is the convolution in time-domain. Due to the duality, it becomes a multiplication in the frequency domain.
\begin{equation}
- \mathcal{F}\left\{ \underline{f}(t) * \underline{f}(t) \right\} = \mathcal{F}\left\{\underline{f}(t)\right\} \cdot \mathcal{F}\left\{\underline{g}(t)\right\}
+ \mathcal{F}\left\{ \underline{f}(t) * \underline{g}(t) \right\} = \mathcal{F}\left\{\underline{f}(t)\right\} \cdot \mathcal{F}\left\{\underline{g}(t)\right\}
\label{eq:ch02:op_conv}
\end{equation}
diff --git a/chapter03/content_ch03.tex b/chapter03/content_ch03.tex
index 20e7e00..85c1561 100644
--- a/chapter03/content_ch03.tex
+++ b/chapter03/content_ch03.tex
@@ -229,7 +229,7 @@ The temporal mean is calculated as the arithmetic mean with following difference
\begin{definition}{Temporal mean}
The \index{temporal mean} \textbf{temporal mean} of time-domain signal $x_i(t)$ is:
\begin{equation}
- \overline{x_i} = \E\left\{x_i(t)\right\} = \lim\limits_{T \rightarrow \infty} \frac{1}{T} \int\limits_{-\frac{T}{2}}^{\frac{T}{2}} x_i{t} \; \mathrm{d} t
+ \overline{x_i} = \E\left\{x_i(t)\right\} = \lim\limits_{T \rightarrow \infty} \frac{1}{T} \int\limits_{-\frac{T}{2}}^{\frac{T}{2}} x_i(t) \; \mathrm{d} t
\end{equation}%
\nomenclature[Sx]{$\overline{x}$, $\E\left\{x_i(t)\right\}$}{Temporal mean of x}
\end{definition}
diff --git a/chapter04/content_ch04.tex b/chapter04/content_ch04.tex
index a5fc3bd..187fedd 100644
--- a/chapter04/content_ch04.tex
+++ b/chapter04/content_ch04.tex
@@ -51,7 +51,7 @@
xticklabels={$0$, $T_S$, $2 T_S$, $3 T_S$, $4 T_S$, $5 T_S$, $6 T_S$},
]
\addplot[smooth, blue, dashed] coordinates {(0, 1.1) (1, 1.8) (2, 2.1) (3, 1.0) (4, 0.8) (5, 1.7) (6, 2.4)};
- \addlegendentry{$\underline{x}{t}$};
+ \addlegendentry{$\underline{x}(t)$};
\addplot[red, thick] coordinates {(0, 0) (0, 1.1)};
\addplot[red, thick] coordinates {(1, 0) (1, 1.8)};
\addplot[red, thick] coordinates {(2, 0) (2, 2.1)};
@@ -60,7 +60,7 @@
\addplot[red, thick] coordinates {(5, 0) (5, 1.7)};
\addplot[red, thick] coordinates {(6, 0) (6, 2.4)};
\addplot[only marks, red, thick, mark=o] coordinates {(0, 1.1) (1, 1.8) (2, 2.1) (3, 1.0) (4, 0.8) (5, 1.7) (6, 2.4)};
- \addlegendentry{$\underline{x}_S{t}$};
+ \addlegendentry{$\underline{x}_S(t)$};
\end{axis}
\end{tikzpicture}
\caption{Sampling of a time-continuous signal}
@@ -169,10 +169,10 @@ The Dirac delta function is zero expect at $t = n T_S$. So, \eqref{eq:ch4:one_sa
xticklabels={$0$, $T_S$, $2 T_S$, $3 T_S$, $4 T_S$, $5 T_S$, $6 T_S$},
]
\addplot[smooth, blue, dashed] coordinates {(0, 1.1) (1, 1.8) (2, 2.1) (3, 1.0) (4, 0.8) (5, 1.7) (6, 2.4)};
- \addlegendentry{$\underline{x}{t}$};
+ \addlegendentry{$\underline{x}(t)$};
\addplot[red, thick] coordinates {(2, 0) (2, 2.1)};
\addplot[only marks, red, thick, mark=o] coordinates {(2, 2.1)};
- \addlegendentry{$\underline{x}_{S,n}{t}$};
+ \addlegendentry{$\underline{x}_{S,n}(t)$};
\end{axis}
\end{tikzpicture}
\caption[Taking out exactly one sample out of $\underline{x}(t)$]{Taking out exactly one sample out of $\underline{x}(t)$ -- in this example $n = 2$.}