summaryrefslogtreecommitdiff
path: root/chapter02
diff options
context:
space:
mode:
Diffstat (limited to 'chapter02')
-rw-r--r--chapter02/content_ch02.tex (renamed from chapter02/content.tex)9
1 files changed, 7 insertions, 2 deletions
diff --git a/chapter02/content.tex b/chapter02/content_ch02.tex
index f22fc80..8a9ec88 100644
--- a/chapter02/content.tex
+++ b/chapter02/content_ch02.tex
@@ -1,5 +1,7 @@
\chapter{Signals and Systems}
+\begin{refsection}
+
All signals considered in this chapter are \index{signal!deterministic signal} \textbf{deterministic}, i.e., its values are predictable at any time. Especially, the values can be calculated by a mathematical equation. In contrast, \emph{random} signals are not predictable. Its values are subject to a random process, which must be modelled stochastically.
\index{signal!time-continuous}
@@ -114,13 +116,13 @@ The phasor $\underline{X} \in \mathbb{C}$ is a complex number, which is mostly r
\begin{figure}[H]
\centering
- \begin{tikzpicture}
+ \begin{tikzpicture}
\draw[->] (-3.2,0) -- (3.2,0) node[below, align=left]{$\Re$};
\draw[->] (0,-3.2) -- (0,3.2) node[left, align=right]{$\Im$};
\draw[->, thick] (0, 0) -- (-40:3) node[right, align=left]{Complex phasor $\underline{X}$\\ (position at $t = 0$)};
\draw (0:1.5) arc(0:-40:1.5) node[midway, right, align=left]{Phase $\varphi_0$};
- \draw[->, dashed] (-50:1) arc(-50:30:1) node[right, align=left]{$\omega_0$};
+ \draw[->, dashed] (-50:1) arc(-50:30:1) node[right, align=left]{$\omega_0$};
\end{tikzpicture}
\caption{Phasor in the complex plane}
\label{fig:ch02:cmplxplane_phasor}
@@ -449,3 +451,6 @@ The Fourier transform of the Dirac delta function is the frequency-independent c
\subsection{Convolution}
\subsection{Poles and Zeroes}
+
+\printbibliography[heading=subbibliography]
+\end{refsection}