diff options
Diffstat (limited to 'chapter04/content_ch04.tex')
| -rw-r--r-- | chapter04/content_ch04.tex | 76 |
1 files changed, 61 insertions, 15 deletions
diff --git a/chapter04/content_ch04.tex b/chapter04/content_ch04.tex index 63def3d..4b301a3 100644 --- a/chapter04/content_ch04.tex +++ b/chapter04/content_ch04.tex @@ -262,7 +262,7 @@ A \index{sampler} \textbf{sampler} is a system which The sampled signal $\underline{x}_S(t)$ is a chain of pulses (red signal in Figure \ref{fig:ch04:sampling_of_signal}). The chain of pulses can then be reinterpreted as a time-discrete signal $\underline{x}[n]$. The value of $\underline{x}[n]$ is: \begin{equation} - \underline{x}[n] = \underline{x}_S\left(n T_S\right) = \underline{x}\left(n T_S\right) \qquad \forall \; n \in \mathbb{Z} + \underline{x}[n] = T_S \underline{x}_S\left(n T_S\right) = \underline{x}\left(n T_S\right) \qquad \forall \; n \in \mathbb{Z} \label{eq:ch04:sample_value} \end{equation} @@ -285,6 +285,39 @@ The sampled signal $\underline{x}_S(t)$ is a chain of pulses (red signal in Figu \caption{An abstract view on sampling} \end{figure} +\begin{excursus}{Normalisation of the sampled signal} + \label{ref:ch04:normalization_xs} + + You may wonder about the equation \eqref{eq:ch04:sample_value}. Where does the $T_S$ in $T_S \underline{x}_S\left(n T_S\right)$ come from? + + \vspace{0.5em} + + The value of the sampled signal $\underline{x}_S\left(n T_S\right)$ is normalized by $\frac{1}{T_S}$. This is a result of the normalization of the Dirac delta function. Its argument shall be unitless. However, its argument $t - n T_S$ is a time unit. Consequently, the argument must be normalized by $T_S$. + \begin{equation} + \delta\left(t - n T_S\right) = \frac{1}{T_S} \delta\left(\frac{t}{T_S} - n\right) + \end{equation} + using the scaling property of the Dirac delta function, which is: + \begin{equation} + \delta\left(t\right) = \frac{1}{|a|} \left(\frac{t}{a}\right) + \end{equation} + \eqref{eq:ch04:ideal_sampling} can be rewritten to + \begin{equation} + \begin{split} + \underline{x}_S(t) &= \sum\limits_{n = -\infty}^{\infty} \underline{x}\left(n T_S\right) \delta\left(t - n T_S\right) \\ + &= \sum\limits_{n = -\infty}^{\infty} \underline{x}\left(n T_S\right) \cdot \frac{1}{T_S} \delta\left(\frac{t}{T_S} - n\right) \\ + T_S \underline{x}_S(t) &= \sum\limits_{n = -\infty}^{\infty} \underline{x}\left(n T_S\right) \delta\left(\frac{t}{T_S} - n\right) \\ + \end{split} + \end{equation} + The reason why $\underline{x}_S(t)$ needs to be normalized is, that it is an indefinitely small Dirac delta pulse. $T_S$ is the equidistant spacing between the pulses. + + \vspace{0.5em} + + Why is $\underline{x}[n]$ not scaled? It is, but its normalization constant is not explicitly written. The equidistant spacing between $\underline{x}[n]$ and $\underline{x}[n+1]$ is $1$. Thus, their normalization constant is $1$, too. + \begin{equation*} + 1 \cdot \underline{x}[n] = T_S \underline{x}_S\left(n T_S\right) = \underline{x}\left(n T_S\right) + \end{equation*} +\end{excursus} + \subsubsection{Irreversibility of Sampling} \begin{fact} @@ -327,6 +360,8 @@ Sampling is always lossy in general. \end{split} \end{equation} +\textit{Remark:} Please note the normalization of the sampled signal by $T_S$, as explained on page \pageref{ref:ch04:normalization_xs}. + The ideally sampled signal $\underline{x}_S(t)$ can be expressed as a sum of \emph{frequency shifts} of the original signal $\underline{x}(t)$. Its Fourier transform is: \begin{equation} \begin{split} @@ -338,6 +373,8 @@ The ideally sampled signal $\underline{x}_S(t)$ can be expressed as a sum of \em \end{split} \end{equation} +\textit{Remark:} Please note the normalization of the sampled signal by $T_S$, as explained on page \pageref{ref:ch04:normalization_xs}. + \begin{proof}{} An alternative way is using the Fourier transform of this multiplication in the time-domain is a convolution in the frequency domain: \begin{equation} @@ -778,46 +815,55 @@ The Fourier transform of the sampled signal $\underline{x}_S(t)$ is: \underline{X}_S \left(j \omega\right) &= \mathcal{F} \left\{\underline{x}_S(t)\right\} \\ &= \mathcal{F} \left\{\sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot \delta(t - n T_S)\right\} \\ &= \int\limits_{t = -\infty}^{\infty} \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot \delta(t - n T_S) \cdot e^{-j \omega t} \, \mathrm{d} t \\ - &= \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \int\limits_{t = -\infty}^{\infty} \cdot \delta(t - n T_S) \cdot e^{-j \omega t} \, \mathrm{d} t \\ + &= \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \int\limits_{t = -\infty}^{\infty} \delta(t - n T_S) \cdot e^{-j \omega t} \, \mathrm{d} t \\ &\qquad \text{Using the Dirac measure:} \\ - &= \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{-j \omega n T_S} + &= \underbrace{\sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{-j \omega n T_S}}_{= \underline{X}_{\frac{2\pi}{T_S}} \left(e^{j T_S \omega}\right)} \end{split} + \label{eq:ch04:sampled_signal_spectrum} \end{equation} Redefining $\phi = T_S \omega$: \begin{equation} - \underline{X}_S \left(j \omega\right) = \underline{X}_{2 \pi} \left(e^{j \phi}\right) = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{-j \phi n} + \underline{X}_S \left(j \omega\right) = \left.\underline{X}_{\frac{2\pi}{T_S}} \left(e^{j T_S \omega}\right)\right|_{T_S \omega = \phi} = \underline{X}_{2 \pi} \left(e^{j \phi}\right) = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{-j \phi n} \end{equation} -$\underline{X}_{2 \pi} \left(e^{j \phi}\right)$ is the discrete-time Fourier transform of the time-discrete, sampled signal $\underline{x}[n]$. +$\underline{X}_{2 \pi} \left(e^{j \phi}\right)$ or $\underline{X}_{\frac{2\pi}{T_S}} \left(e^{j T_S \omega}\right)$, respectively, is the discrete-time Fourier transform of the time-discrete, sampled signal $\underline{x}[n]$. \begin{itemize} - \item The spectrum of the sampled signal $\underline{x}[n]$ is $\omega_S$-periodic. + \item The spectrum of the sampled signal $\underline{X}_{\frac{2\pi}{T_S}} \left(e^{j T_S \omega}\right)$ is $\omega_S$-periodic or (with $\omega_S = \frac{2\pi}{T_S}$) $\frac{2\pi}{T_S}$-periodic. + \item The $\frac{2\pi}{T_S}$-periodicity is equivalent to to a full $2\pi$-rotation on the unit circle $e^{j \phi}$ in the complex plane. \item The real-valued frequency-continuous variable $\omega$ is replaced by the complex-valued frequency-continuous variable $e^{j \phi}$ representing the periodicity of the spectrum. \item $\phi = T_S \omega$ - \item The $\omega_S$-periodicity is equivalent to to a full $2\pi$-rotation on the unit circle $e^{j \phi}$ in the complex plane. + \item An alternate but equivalent expression $\underline{X}_{2 \pi} \left(e^{j \phi}\right)$ uses the $2\pi$-periodicity. +\end{itemize} + +Both $\underline{X}_{2 \pi} \left(e^{j \phi}\right)$ and $\underline{X}_{\frac{2\pi}{T_S}} \left(e^{j T_S \omega}\right)$ are equivalent. However, they are normalized differently. +\begin{itemize} + \item The spectrum of $\underline{X}_{\frac{2\pi}{T_S}} \left(e^{j T_S \omega}\right)$ is normalized to the sampling angular frequency $\frac{2 \pi}{T_S}$. + \item The spectrum of $\underline{X}_{2 \pi} \left(e^{j \phi}\right)$ is normalized to the full rotation on the unit circle $2 \pi$. \end{itemize} +The normalization is of minor importance for the \ac{DTFT}, but must be considered for the inverse \ac{DTFT}. Both $\underline{X}_{2 \pi} \left(e^{j \phi}\right)$ and $\underline{X}_{\frac{2\pi}{T_S}} \left(e^{j T_S \omega}\right)$ are complex-valued Fourier series (see \eqref{eq:ch04:sampled_signal_spectrum}). For $\underline{X}_{\frac{2\pi}{T_S}} \left(e^{j T_S \omega}\right)$, the normalization factor $\frac{T_S}{2 \pi}$ must be considered and, for $\underline{X}_{2 \pi} \left(e^{j \phi}\right)$, the normalization factor $\frac{1}{2 \pi}$. \begin{definition}{Discrete-time Fourier transform} The \index{discrete-time Fourier transform} \textbf{\acf{DTFT}} of a time-discrete signal $\underline{x}[n]$ with the sampling period $T_S$ is: \begin{itemize} - \item Using the $T$-periodicity: + \item normalized to $\omega_S = \frac{2\pi}{T_S}$ ($\omega_S$-periodicity): \begin{equation} - \underline{X}_{\frac{1}{T}} \left(e^{j T \omega}\right) = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{-j T \omega n} + \underline{X}_{\frac{2\pi}{T_S}} \left(e^{j T_S \omega}\right) = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{-j T_S \omega n} \end{equation} - \item Using the $2 \pi$-periodicity: + \item normalized to $2 \pi$ ($2 \pi$-periodicity): \begin{equation} \underline{X}_{2 \pi} \left(e^{j \phi}\right) = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{-j \phi n} \end{equation} \end{itemize} - Both expressions are equivalent. $\phi = T_S \omega$ + Both expressions are equivalent ($\phi = T_S \omega$). - The \index{discrete-time Fourier transform!inverse} \textbf{inverse discrete-time Fourier transform} of a time-discrete signal $\underline{x}[n]$ with the sampling period $T_S$ is: + The \index{discrete-time Fourier transform!inverse} \textbf{inverse discrete-time Fourier transform} is: \begin{itemize} - \item Using the $T$-periodicity: \todo{$T$ ???} + \item normalized to $\omega_S = \frac{2\pi}{T_S}$ ($\omega_S$-periodicity): \begin{equation} - \underline{x}[n] = \frac{T}{2 \pi} \int\limits_{- \frac{\pi}{T}}^{+ \frac{\pi}{T}} \underline{X}_{\frac{1}{T}}(e^{j T \omega}) \cdot e^{+ j \omega T n} \, \mathrm{d} \omega + \underline{x}[n] = \frac{T_S}{2 \pi} \int\limits_{- \frac{\pi}{T_S}}^{+ \frac{\pi}{T_S}} \underline{X}_{\frac{2\pi}{T_S}}(e^{j T_S \omega}) \cdot e^{+ j \omega T_S n} \, \mathrm{d} \omega \end{equation} - \item Using the $2 \pi$-periodicity: + \item normalized to $2 \pi$ ($2 \pi$-periodicity): \begin{equation} \underline{x}[n] = \frac{1}{2 \pi} \int\limits_{- \pi}^{+ \pi} \underline{X}_{2\pi}(e^{j \phi}) \cdot e^{+ j \phi n} \, \mathrm{d} \phi \end{equation} |
