summaryrefslogtreecommitdiff
path: root/chapter04/content_ch04.tex
diff options
context:
space:
mode:
Diffstat (limited to 'chapter04/content_ch04.tex')
-rw-r--r--chapter04/content_ch04.tex585
1 files changed, 533 insertions, 52 deletions
diff --git a/chapter04/content_ch04.tex b/chapter04/content_ch04.tex
index c40e76c..9362134 100644
--- a/chapter04/content_ch04.tex
+++ b/chapter04/content_ch04.tex
@@ -109,6 +109,8 @@ Some corollaries can be deducted from these two points:
\end{itemize}
\end{itemize}
+\subsubsection{Dirac comb}
+
We know already indefinitely narrow pulses. They are Dirac delta functions $\delta\left(t - n T_S\right)$.
Taking out \underline{exactly one} sample out of $\underline{x}(t)$ is a multiplication of $\underline{x}(t)$ with $\delta\left(t - n T_S\right)$.
@@ -181,49 +183,63 @@ The sum of Dirac delta functions
\item is called \index{Dirac comb} \textbf{Dirac comb} $\Sha_{T_S}(t)$ or \index{impulse train} \textbf{impulse train}.
\end{itemize}
-\begin{equation}
- \Sha_{T_S}(t) = \sum\limits_{n = -\infty}^{\infty} \delta\left(t - n T_S\right)
-\end{equation}
-\begin{figure}[H]
- \centering
- \begin{tikzpicture}
- \begin{axis}[
- height={0.15\textheight},
- width=0.9\linewidth,
- scale only axis,
- xlabel={$t$},
- ylabel={$\Sha_{T_S}(t)$},
- %grid style={line width=.6pt, color=lightgray},
- %grid=both,
- grid=none,
- legend pos=north east,
- axis y line=middle,
- axis x line=middle,
- every axis x label/.style={
- at={(ticklabel* cs:1.05)},
- anchor=north,
- },
- every axis y label/.style={
- at={(ticklabel* cs:1.05)},
- anchor=east,
- },
- xmin=-5.5,
- xmax=5.5,
- ymin=0,
- ymax=1.2,
- xtick={-5, -4, ..., 5},
- xticklabels={$-5 T_S$, $-4 T_S$, $-3 T_S$, $-2 T_S$, $- T_S$, $0$, $T_S$, $2 T_S$, $3 T_S$, $4 T_S$, $5 T_S$},
- ytick={0},
- ]
- \pgfplotsinvokeforeach{-5, -4, ..., 5}{
- \draw[-latex, blue, very thick] (axis cs:#1,0) -- (axis cs:#1,1);
- %\addplot[blue, very thick] coordinates {(#1, 0) (#1, 1)};
- %\addplot[only marks, blue, thick, mark=triangle] coordinates {(#1, 1)};
- }
- \end{axis}
- \end{tikzpicture}
- \caption{Dirac comb}
-\end{figure}
+\begin{definition}{Dirac comb}
+ The \index{Dirac comb} \textbf{Dirac comb} $\Sha_{T}(t)$ or \index{impulse train} \textbf{impulse train} is:
+ \begin{equation}
+ \Sha_{T}(t) = \sum\limits_{n = -\infty}^{\infty} \delta\left(t - n T\right)
+ \label{eq:ch04:dirac_comb}
+ \end{equation}
+ $T$ is the period of the equidistant Dirac pulses.
+
+ It is a periodic signal and can be decomposed using the Fourier analysis:
+ \begin{equation}
+ \Sha_{T}(t) = \frac{1}{T} \sum\limits_{n = -\infty}^{\infty} e^{j n \frac{2 \pi}{T} t}
+ \label{eq:ch04:dirac_comb_fourier_series}
+ \end{equation}
+
+ \begin{figure}[H]
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.15\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$t$},
+ ylabel={$\Sha_{T_S}(t)$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-5.5,
+ xmax=5.5,
+ ymin=0,
+ ymax=1.2,
+ xtick={-5, -4, ..., 5},
+ xticklabels={$-5 T_S$, $-4 T_S$, $-3 T_S$, $-2 T_S$, $- T_S$, $0$, $T_S$, $2 T_S$, $3 T_S$, $4 T_S$, $5 T_S$},
+ ytick={0},
+ ]
+ \pgfplotsinvokeforeach{-5, -4, ..., 5}{
+ \draw[-latex, blue, very thick] (axis cs:#1,0) -- (axis cs:#1,1);
+ %\addplot[blue, very thick] coordinates {(#1, 0) (#1, 1)};
+ %\addplot[only marks, blue, thick, mark=triangle] coordinates {(#1, 1)};
+ }
+ \end{axis}
+ \end{tikzpicture}
+ \caption{Dirac comb}
+ \end{figure}
+\end{definition}
+
+\subsubsection{Ideal Sampler}
A \index{sampler} \textbf{sampler} is a system which
\begin{itemize}
@@ -231,14 +247,18 @@ A \index{sampler} \textbf{sampler} is a system which
\item to a time-continuous signal $\underline{x}(t)$ (multiplication) and
\item outputs a series of equidistant pulses $\underline{x}_S(t)$.
\end{itemize}
-\begin{equation}
- \begin{split}
- \underline{x}_S(t) &= \underline{x}(t) \cdot \Sha_{T_S}(t) \\
- &= \sum\limits_{n = -\infty}^{\infty} \underline{x}\left(t\right) \delta\left(t - n T_S\right) \\
- &= \sum\limits_{n = -\infty}^{\infty} \underline{x}\left(n T_S\right) \delta\left(t - n T_S\right)
- \end{split}
- \label{eq:ch04:ideal_sampling}
-\end{equation}
+
+\begin{definition}{Ideally sampled signal}
+ An ideally \index{sampled signal} sampled signal is:
+ \begin{equation}
+ \begin{split}
+ \underline{x}_S(t) &= \underline{x}(t) \cdot \Sha_{T_S}(t) \\
+ &= \sum\limits_{n = -\infty}^{\infty} \underline{x}\left(t\right) \delta\left(t - n T_S\right) \\
+ &= \sum\limits_{n = -\infty}^{\infty} \underline{x}\left(n T_S\right) \delta\left(t - n T_S\right)
+ \end{split}
+ \label{eq:ch04:ideal_sampling}
+ \end{equation}
+\end{definition}
The sampled signal $\underline{x}_S(t)$ is a chain of pulses (red signal in Figure \ref{fig:ch04:sampling_of_signal}). The chain of pulses can then be reinterpreted as a time-discrete signal $\underline{x}[n]$. The value of $\underline{x}[n]$ is:
\begin{equation}
@@ -265,6 +285,8 @@ The sampled signal $\underline{x}_S(t)$ is a chain of pulses (red signal in Figu
\caption{An abstract view on sampling}
\end{figure}
+\subsubsection{Irreversibility of Sampling}
+
\begin{fact}
The act of sampling is irreversible.
\end{fact}
@@ -280,8 +302,467 @@ But there is generally no way back to reconstruct the original signal. $\mathrm{
Sampling is always lossy in general.
-\subsection{Sampling Theorem and Aliasing}
+\subsection{Sampling Theorem, Aliasing and Reconstruction}
+
+\subsubsection{Frequency Domain Representation}
+
+\begin{excursus}{Fourier transform of the Dirac comb}
+ The Fourier transform of the Dirac comb is again a Dirac comb:
+ \begin{equation}
+ \begin{split}
+ \Sha_{T}(t) \TransformHoriz \mathcal{F}\left\{\Sha_{T}(t)\right\} &= \frac{2 \pi}{T} \Sha_{\frac{2 \pi}{T}}(\omega) \\
+ &= \frac{2 \pi}{T} \sum\limits_{k = -\infty}^{\infty} \delta\left(\omega - k \frac{2 \pi}{T}\right) \\
+ &= \sum\limits_{k = -\infty}^{\infty} e^{- j \omega k T}
+ \end{split}
+ \label{eq:ch04:dirac_comb_fourier_tranform}
+ \end{equation}
+\end{excursus}
+
+\eqref{eq:ch04:ideal_sampling} pointed out, that the sampled signal $\underline{x}_S(t)$ is the multiplication of the original time-domain signal $\underline{x}(t)$ and the Dirac comb $\Sha_{T_S}(t)$ with a periodicity of the sampling period $T_S$.
+\begin{equation}
+ \begin{split}
+ \underline{x}_S(t) &= \underline{x}(t) \cdot \Sha_{T_S}(t) \\
+ &= \underline{x}(t) \cdot \frac{1}{T_S} \sum\limits_{n = -\infty}^{\infty} e^{j n \frac{2 \pi}{T_S} t} \\
+ &= \frac{1}{T_S} \sum\limits_{n = -\infty}^{\infty} \underbrace{\underline{x}(t) e^{j n \frac{2 \pi}{T_S} t}}_{\text{Frequency shift by } n \frac{2 \pi}{T_S}} \\
+ \end{split}
+\end{equation}
+
+The ideally sampled signal $\underline{x}_S(t)$ can be expressed as a sum of \emph{frequency shifts} of the original signal $\underline{x}(t)$. Its Fourier transform is:
+\begin{equation}
+ \begin{split}
+ \underline{X}_S\left(j \omega\right) &= \mathcal{F}\left\{\frac{1}{T_S} \sum\limits_{k = -\infty}^{\infty} \underline{x}(t) e^{j k \frac{2 \pi}{T_S} t}\right\} \\
+ & \qquad \text{Using the linearity of the Fourier transform:} \\
+ &= \frac{1}{T_S} \sum\limits_{k = -\infty}^{\infty} \mathcal{F}\left\{\underline{x}(t) e^{j k \frac{2 \pi}{T_S} t}\right\} \\
+ & \qquad \text{Using the frequency shift theorem of the Fourier transform:} \\
+ &= \frac{1}{T_S} \sum\limits_{k = -\infty}^{\infty} \underline{X}\left(j \left(\omega - k \frac{2 \pi}{T_S} \right)\right)
+ \end{split}
+\end{equation}
+
+\begin{proof}{}
+ An alternative way is using the Fourier transform of this multiplication in the time-domain is a convolution in the frequency domain:
+ \begin{equation}
+ \begin{split}
+ \underline{X}_S\left(j \omega\right) &= \mathcal{F}\left\{\underline{x}(t) \cdot \Sha_{T_S}(t)\right\} \\
+ &= \frac{1}{2 \pi} \underline{X}\left(j \omega\right) * \left(\frac{2 \pi}{T_S} \Sha_{\frac{2 \pi}{T_S}}(\omega)\right) \\
+ &= \frac{1}{T_S} \int\limits_{-\infty}^{\infty} \underline{X}\left(j \left(\omega - \zeta\right)\right) \Sha_{\frac{2 \pi}{T_S}}\left(\zeta\right) \, \mathrm{d} \zeta \\
+ &= \frac{1}{T_S} \int\limits_{-\infty}^{\infty} \underline{X}\left(j \left(\omega - \zeta\right)\right) \sum\limits_{k = -\infty}^{\infty} \delta\left(\zeta - k \frac{2 \pi}{T_S}\right) \, \mathrm{d} \zeta \\
+ &= \frac{1}{T_S} \sum\limits_{k = -\infty}^{\infty} \int\limits_{-\infty}^{\infty} \underline{X}\left(j \left(\omega - \zeta\right)\right) \delta\left(\zeta - k \frac{2 \pi}{T_S}\right) \, \mathrm{d} \zeta \\
+ & \qquad \text{Using the Dirac measure:} \\
+ &= \frac{1}{T_S} \sum\limits_{k = -\infty}^{\infty} \underline{X}\left(j \left(\omega - k \frac{2 \pi}{T_S}\right)\right) \\
+ \end{split}
+ \end{equation}
+\end{proof}
+
+\textbf{Conclusion:} The spectrum of the sampled signal $\underline{X}_S\left(j \omega\right)$
+\begin{itemize}
+ \item consists of superimposed, frequency-shifted copies of the spectra of the original signal $\underline{X}\left(j\omega\right)$ and
+ \item the periodicity of the superimposed, frequency-shifted copies is the sampling angular frequency $\omega_S = \frac{2 \pi}{T_S}$ or sampling frequency $f_S$, respectively,
+ \item each frequency-shifted copy starts at $k \omega_S - \frac{\omega_S}{2}$ and ends at $k \omega_S + \frac{\omega_S}{2}$.
+\end{itemize}
+
+\begin{figure}[H]
+ \subfloat[Original signal $\underline{X}\left(j\omega\right)$] {
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.15\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$\omega$},
+ ylabel={$|\underline{X}\left(j\omega\right)|$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-3.5,
+ xmax=3.5,
+ ymin=0,
+ ymax=1.2,
+ xtick={-1, -0.5, 0, 0.5, 1},
+ xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
+ ytick={0},
+ ]
+ \draw[green, thick] (axis cs:-0.4,0) -- (axis cs:0,0.7);
+ \draw[red, thick] (axis cs:0,0.7) -- (axis cs:0.4,0);
+ \end{axis}
+ \end{tikzpicture}
+ }
+ \subfloat[Spectrum of the Dirac comb $\frac{2 \pi}{T} \Sha_{\frac{2 \pi}{T}}(\omega)$] {
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.15\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$t$},
+ ylabel={$|\frac{2 \pi}{T} \Sha_{\frac{2 \pi}{T}}(\omega)|$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-3.5,
+ xmax=3.5,
+ ymin=0,
+ ymax=1.2,
+ xtick={-3, -2, ..., 3},
+ xticklabels={$-3 \omega_S$, $-2 \omega_S$, $- \omega_S$, $0$, $\omega_S$, $2 \omega_S$, $3 \omega_S$},
+ ytick={0},
+ ]
+ \pgfplotsinvokeforeach{-3, -2, ..., 3}{
+ \draw[-latex, blue, very thick] (axis cs:#1,0) -- (axis cs:#1,1);
+ }
+ \end{axis}
+ \end{tikzpicture}
+ }
+
+ \subfloat[Sampled signal $\underline{X}_S\left(j\omega\right)$] {
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.15\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$\omega$},
+ ylabel={$|\underline{X}_S\left(j\omega\right)|$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-3.5,
+ xmax=3.5,
+ ymin=0,
+ ymax=1.2,
+ xtick={-3, -2, -1, -0.5, 0, 0.5, 1, 2, 3},
+ xticklabels={$-3 \omega_S$, $-2 \omega_S$, $- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$, $2 \omega_S$, $3 \omega_S$},
+ ytick={0},
+ ]
+ \pgfplotsinvokeforeach{-3, -2, ..., 3}{
+ \draw[-latex, blue, dashed, very thick] (axis cs:#1,0) -- (axis cs:#1,1);
+ \draw[green, thick] (axis cs:{#1-0.4},0) -- (axis cs:#1,0.7);
+ \draw[red, thick] (axis cs:#1,0.7) -- (axis cs:{#1+0.4},0);
+ }
+ \end{axis}
+ \end{tikzpicture}
+ }
+
+ \caption{Spectrum of the sampled signal}
+\end{figure}
+
+\begin{attention}
+ The spectrum of the original signal $\underline{X}\left(j\omega\right)$ has both negative and positive frequencies. Remember that the symmetry rules apply \underline{only} for real-valued time-domain signals.
+\end{attention}
+
+\subsubsection{Aliasing}
+
+The original signal in the previous example was limited to $- \frac{\omega_S}{2} \leq \omega \leq \frac{\omega_S}{2}$. The spectrum sampled signal consists of the frequency-shifted copies of the original signal's spectrum. Although they are superimposed, they do not overlap.
+
+A problem arises when the original signal is \underline{not} limited to $- \frac{\omega_S}{2} \leq \omega \leq \frac{\omega_S}{2}$. The original signal's spectrum will overlap.
+
+\begin{figure}[H]
+ \subfloat[Original signal $\underline{X}\left(j\omega\right)$ violating the band-limitation $- \frac{\omega_S}{2} \leq \omega \leq \frac{\omega_S}{2}$. The original signal's spectrum will overlap.
+ ] {
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.15\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$\omega$},
+ ylabel={$|\underline{X}\left(j\omega\right)|$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-3.5,
+ xmax=3.5,
+ ymin=0,
+ ymax=1.2,
+ xtick={-3, -2, -1, -0.5, 0, 0.5, 1, 2, 3},
+ xticklabels={$-3 \omega_S$, $-2 \omega_S$, $- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$, $2 \omega_S$, $3 \omega_S$},
+ ytick={0},
+ ]
+ \draw[green, thick] (axis cs:-0.7,0) -- (axis cs:0,0.7);
+ \draw[red, thick] (axis cs:0,0.7) -- (axis cs:0.8,0);
+ \draw[olive, thick] (axis cs:2.1,0) -- (axis cs:2.1,0.5) -- (axis cs:2.3,0.5) -- (axis cs:2.3,0);
+ \end{axis}
+ \end{tikzpicture}
+ }
+
+ \subfloat[Spectrum of the Dirac comb $\frac{2 \pi}{T} \Sha_{\frac{2 \pi}{T}}(\omega)$] {
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.15\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$t$},
+ ylabel={$|\frac{2 \pi}{T} \Sha_{\frac{2 \pi}{T}}(\omega)|$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-3.5,
+ xmax=3.5,
+ ymin=0,
+ ymax=1.2,
+ xtick={-3, -2, ..., 3},
+ xticklabels={$-3 \omega_S$, $-2 \omega_S$, $- \omega_S$, $0$, $\omega_S$, $2 \omega_S$, $3 \omega_S$},
+ ytick={0},
+ ]
+ \pgfplotsinvokeforeach{-3, -2, ..., 3}{
+ \draw[-latex, blue, very thick] (axis cs:#1,0) -- (axis cs:#1,1);
+ }
+ \end{axis}
+ \end{tikzpicture}
+ }
+
+ \subfloat[Sampled signal $\underline{X}_S\left(j\omega\right)$ showing aliasing] {
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.15\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$\omega$},
+ ylabel={$|\underline{X}_S\left(j\omega\right)|$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-3.5,
+ xmax=3.5,
+ ymin=0,
+ ymax=1.2,
+ xtick={-3, -2, -1, -0.5, 0, 0.5, 1, 2, 3},
+ xticklabels={$-3 \omega_S$, $-2 \omega_S$, $- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$, $2 \omega_S$, $3 \omega_S$},
+ ytick={0},
+ ]
+ \pgfplotsinvokeforeach{-3, -2, ..., 3}{
+ \draw[-latex, blue, dashed, very thick] (axis cs:#1,0) -- (axis cs:#1,1);
+ \draw[green, thick] (axis cs:{#1-0.7},0) -- (axis cs:#1,0.7);
+ \draw[red, thick] (axis cs:#1,0.7) -- (axis cs:{#1+0.8},0);
+ \draw[olive, thick] (axis cs:{#1+0.1},0) -- (axis cs:{#1+0.1},0.5) -- (axis cs:{#1+0.3},0.5) -- (axis cs:{#1+0.3},0);
+ }
+ \end{axis}
+ \end{tikzpicture}
+ }
+
+ \caption{Aliasing}
+\end{figure}
+
+The sampled signal $\underline{X}_S\left(j\omega\right)$ contains overlapping, frequency-shifted copies of the original signal's spectrum. This is not feasible for most applications.
+
+\begin{definition}{Anti-aliasing filter}
+ A signal $\underline{x}(t)$ must be band-limited by an \index{anti-aliasing filter} \textbf{anti-aliasing filter} to avoid aliasing. The anti-aliasing filter is a \ac{LPF} with the cut-off frequency $\omega_o = \frac{\omega_S}{2}$.
+
+ \begin{figure}[H]
+ \centering
+ \begin{adjustbox}{scale=0.7}
+ \begin{circuitikz}
+ \node[draw, block] (Sampler) {Ideal sampler};
+ \node[draw, block, right=3cm of Sampler] (ReInterp) {Reinterpret as\\ time-discrete signal};
+
+ \draw[<-o] (Sampler.west) to[lowpass] ++(-2.5cm, 0) -- ++(-0.7cm,0) node[above, align=center]{Time-continuous\\ signal $\underline{x}(t)$};
+ \draw[->] (Sampler.east) -- (ReInterp.west) node[midway, above, align=center]{Series of pulses\\ $\underline{x}_S(t)$};
+ \draw[<-] (Sampler.south) -- ++(0, -0.75cm) node[below, align=center]{Dirac comb\\ $\Sha_{T_S}(t)$};
+ \draw[->] (ReInterp.east) -- ++(1.5cm, 0) node[above, align=center]{Time-discrete\\ signal $\underline{x}[n]$};
+
+ \draw[dashed] (ReInterp.north) -- ++(0, 2cm) node[below left, align=right]{Time-continuous\\ domain} node[below right, align=left]{Time-discrete\\ domain};
+ \draw[dashed] (ReInterp.south) -- ++(0, -1cm);
+ \end{circuitikz}
+ \end{adjustbox}
+ \caption{An abstract view on sampling, including the anti-aliasing filter}
+ \end{figure}
+\end{definition}
+
+The anti-aliasing filter's cut-off frequency must be half of the sampling frequency, because its bandwidth $\omega_S$ or $f_S$, respectively, must be distributed equally over the negative and positive part of the frequency axis.
+
+\subsubsection{Reconstruction}
+
+\textit{Remark:} Due to aliasing, there is no inverse function $\mathrm{Sampling}^{-1} \left(\underline{x}_S(t)\right)$ reversing the sampling process.
+
+However, the original signal $\underline{x}(t)$ can be reconstructed if it was band-limited to the sampling (angular) frequency $\omega_S$ or $f_S$, respectively, before sampling.
+
+\begin{definition}{Shannon-Nyquist sampling theorem}
+ According to the \index{Shannon-Nyquist sampling theorem} \textbf{Shannon-Nyquist sampling theorem}, the original signal $\underline{x}(t)$ can be reconstructed if the sample rate $T_S$ is at least twice the inverse of signal's highest (angular) frequency $\omega_B$ or $f_B$, respectively.
+ \begin{equation}
+ T_S \geq \frac{1}{2 f_B} = \frac{\pi}{\omega_B}
+ \end{equation}
+\end{definition}
+
+The \index{reconstruction} \textbf{reconstruction} of a sampled signal is done by:
+\begin{itemize}
+ \item Reinterpreting the time-discrete signal $\underline{x}[n]$ again as a time-continuous, sampled signal $\underline{x}_S(t)$.
+ \item Removing the copies of the original signal in the frequency domain, using a \ac{LPF} (\index{reconstruction filter} \textbf{reconstruction filter}) with the cut-off frequency $\omega_o = \frac{\omega_S}{2}$.
+\end{itemize}
+
+\begin{figure}[H]
+ \centering
+ \begin{adjustbox}{scale=0.7}
+ \begin{circuitikz}
+ \node[draw, block, right=3cm of Sampler] (ReInterp) {Reinterpret as\\ time-continuous signal};
+
+ \draw[<-o] (ReInterp.west) -- ++(-1.5cm, 0) node[above, align=center]{Time-discrete\\ signal $\underline{x}[n]$};
+ \draw (ReInterp.east) -- ++(3cm,0) node[midway, above, align=center]{Series of pulses\\ $\underline{x}_S(t)$}
+ to[lowpass] ++(2.5cm,0 ) -- ++(0.7cm, 0) node[above, align=center]{Reconstructed\\ time-continuous\\ signal $\underline{\tilde{x}}(t)$};
+
+ \draw[dashed] (ReInterp.north) -- ++(0, 2cm) node[below left, align=right]{Time-discrete\\ domain} node[below right, align=left]{Time-continuous\\ domain};
+ \draw[dashed] (ReInterp.south) -- ++(0, -1cm);
+ \end{circuitikz}
+ \end{adjustbox}
+ \caption{An abstract view on reconstruction}
+\end{figure}
+
+The reconstructed signal $\underline{\tilde{x}}(t)$ equals the original signal $\underline{x}(t)$ only if the Shannon-Nyquist theorem is fulfilled.
+\begin{equation}
+ \underline{\tilde{x}}(t) = \underline{x}(t) \qquad \text{if $\underline{x}(t)$ band-limtied to $-\frac{\omega_S}{2} \leq \omega \leq \frac{\omega_S}{2}$}
+\end{equation}
+
+\begin{figure}[H]
+
+ \subfloat[Sampled signal $\underline{X}_S\left(j\omega\right)$] {
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.15\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$\omega$},
+ ylabel={$|\underline{X}_S\left(j\omega\right)|$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-3.5,
+ xmax=3.5,
+ ymin=0,
+ ymax=1.2,
+ xtick={-3, -2, -1, -0.5, 0, 0.5, 1, 2, 3},
+ xticklabels={$-3 \omega_S$, $-2 \omega_S$, $- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$, $2 \omega_S$, $3 \omega_S$},
+ ytick={0},
+ ]
+ \pgfplotsinvokeforeach{-3, -2, ..., 3}{
+ \draw[-latex, blue, dashed, very thick] (axis cs:#1,0) -- (axis cs:#1,1);
+ \draw[green, thick] (axis cs:{#1-0.4},0) -- (axis cs:#1,0.7);
+ \draw[red, thick] (axis cs:#1,0.7) -- (axis cs:{#1+0.4},0);
+ }
+
+ \draw[black, thick, dashed] (axis cs:-0.5,0) -- (axis cs:-0.5,0.9) -- (axis cs:0.5,0.9) -- (axis cs:0.5,0);
+ \draw (axis cs:0.3,0.9) -- (axis cs:0.4,1.0) node[above right, align=left]{Reconstruction filter};
+ \end{axis}
+ \end{tikzpicture}
+ }
+
+ \subfloat[Reconstructed signal $\underline{\tilde{X}}\left(j\omega\right)$] {
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.15\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$\omega$},
+ ylabel={$|\underline{\tilde{X}}\left(j\omega\right)|$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-3.5,
+ xmax=3.5,
+ ymin=0,
+ ymax=1.2,
+ xtick={-1, -0.5, 0, 0.5, 1},
+ xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
+ ytick={0},
+ ]
+ \draw[green, thick] (axis cs:-0.4,0) -- (axis cs:0,0.7);
+ \draw[red, thick] (axis cs:0,0.7) -- (axis cs:0.4,0);
+ \end{axis}
+ \end{tikzpicture}
+ }
+
+ \caption{Reconstruction of a sampled signal}
+\end{figure}
\subsection{Discrete-Time Fourier Transform}