summaryrefslogtreecommitdiff
path: root/chapter04
diff options
context:
space:
mode:
Diffstat (limited to 'chapter04')
-rw-r--r--chapter04/content_ch04.tex4
1 files changed, 2 insertions, 2 deletions
diff --git a/chapter04/content_ch04.tex b/chapter04/content_ch04.tex
index c4e04f6..a5fc3bd 100644
--- a/chapter04/content_ch04.tex
+++ b/chapter04/content_ch04.tex
@@ -895,7 +895,7 @@ The \ac{DTFT} is derived from the \ac{CTFT}. Therefore, all properties apply lik
Analogous to the Fourier and Laplace transform, the \acf{DTFT} is a special case of the z-transform.
-\begin{definition}{Discrete-time Fourier transform}
+\begin{definition}{z-transform}
The \index{z-transform} \textbf{z-transform} of a time-discrete signal $\underline{x}[n]$ with the sampling period $T_S$ is:
\begin{equation}
\underline{X}\left(\underline{z}\right) = \mathcal{Z}\left\{\underline{x}[n]\right\} = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot \underline{z}^{-n}
@@ -1065,7 +1065,7 @@ The $N \times N$ transformation matrix $\underline{\mat{F}}$ is the \index{DFT m
\begin{equation}
\underline{F}_{pq} = \underline{w}^{p \cdot q}
\end{equation}
-where $\underline{w}$ is the $N$-th \index{primitive root of unity} \textbf{primitive root of unity}\footnote{The primitive root of unity divide the unit circle $e^{j \phi}$ into equally sized segments.}.
+where $\underline{w}$ is the $N$-th \index{primitive root of unity} \textbf{primitive root of unity}\footnote{The primitive root of unity divide the unit circle $e^{j \phi}$ into equally sized segments.}.\nomenclature[Sw]{$\underline{w}_N$}{$N$-th primitive root of unity}
\begin{equation}
\underline{w} = e^{j \frac{2 \pi}{N}}
\end{equation}