summaryrefslogtreecommitdiff
path: root/chapter05
diff options
context:
space:
mode:
Diffstat (limited to 'chapter05')
-rw-r--r--chapter05/content_ch05.tex6
1 files changed, 5 insertions, 1 deletions
diff --git a/chapter05/content_ch05.tex b/chapter05/content_ch05.tex
index f598e65..033246e 100644
--- a/chapter05/content_ch05.tex
+++ b/chapter05/content_ch05.tex
@@ -87,7 +87,7 @@ The \index{amplitude modulation} \textbf{\acf{AM}} is the alteration of the carr
The carrier is a mono-chromatic signal:
\begin{equation}
- x_C(t) = \hat{X}_C \cdot \cos\left(2\pi f_C + \varphi_C\right)
+ x_C(t) = \hat{X}_C \cdot \cos\left(2\pi f_C t + \varphi_C\right)
\end{equation}
where
\begin{itemize}
@@ -1063,10 +1063,14 @@ So, the input signal's spectrum consists of a positive and a negative part:
The frequencies $\omega_{o,1}$ and $\omega_{o,2}$ are called \index{mirror frequencies} \textbf{mirror frequencies}.
\end{definition}
+x
+
\begin{attention}
Because of the mirror frequency issue, a filter (\ac{LPF}, \ac{BPF}, etc.) must follow or precede a mixer to eliminate the unwanted mirror frequency.
\end{attention}
+x
+
\begin{figure}[H]
\subfloat[Input and \acs{LO} signals in the frequency-domain] {