summaryrefslogtreecommitdiff
path: root/chapter06/content_ch06.tex
diff options
context:
space:
mode:
Diffstat (limited to 'chapter06/content_ch06.tex')
-rw-r--r--chapter06/content_ch06.tex75
1 files changed, 3 insertions, 72 deletions
diff --git a/chapter06/content_ch06.tex b/chapter06/content_ch06.tex
index 1a90ab4..03da595 100644
--- a/chapter06/content_ch06.tex
+++ b/chapter06/content_ch06.tex
@@ -8,7 +8,7 @@
% Please find the full copy of the licence at:
% https://creativecommons.org/licenses/by-sa/4.0/legalcode
-\chapter{Digital Signal Processing and Spread Spectrum}
+\chapter{Digital Signal Processing}
\begin{refsection}
@@ -259,8 +259,6 @@ A stable filter has always a value-limited impulse response (\ac{BIBO} stable).
\acs{IIR} filter must be always checked for stability.
\end{fact}
-\todo{examples}
-
\subsection{Finite Impulse Response Filters}
A digital filter without the feed-back path will not have any problems with stability.
@@ -826,7 +824,7 @@ or in the linear scale (\si{mW}):
The quantization noise power is distributed equally over the frequency axis between $[-\frac{1}{2 T_{S,i}}, \frac{1}{2 T_{S,i}}]$, which is the band limit for the sampled input signal. The \index{noise bandwidth} \textbf{noise bandwidth} is therefore $\Delta f_{S,i} = \frac{1}{T_{S,i}}$. The quantization noise floor $S_{N,i}$, which is a \ac{PSD} (\si{mW/Hz}), is:
\begin{equation}
\begin{split}
- S_{N,i} = \frac{P_{N,i}}{\Delta f_{S,i}} \\
+ S_{N,i} &= \frac{P_{N,i}}{\Delta f_{S,i}} \\
&= \frac{P_{N,i}}{\frac{1}{T_{S,i}}} \\
&= P_{N,i} T_{S,i}
\end{split}
@@ -1372,74 +1370,7 @@ $\underline{E}[k]$ and $\underline{O}[k]$ need to be calculated one and can be r
The Cooley-Tukey \acs{FFT} algorithm can be used to calculate the \ac{IFFT}, too.
-\section{Spread Spectrum}
-
-\begin{figure}[H]
- \centering
- \begin{tikzpicture}
- \begin{axis}[
- height={0.15\textheight},
- width=0.8\linewidth,
- scale only axis,
- xlabel={$\omega$},
- ylabel={$|\mathrm{S}_{XX}|$},
- %grid style={line width=.6pt, color=lightgray},
- %grid=both,
- grid=none,
- legend pos=north east,
- axis y line=middle,
- axis x line=middle,
- every axis x label/.style={
- at={(ticklabel* cs:1.05)},
- anchor=north,
- },
- every axis y label/.style={
- at={(ticklabel* cs:1.05)},
- anchor=east,
- },
- xmin=0,
- xmax=10.5,
- ymin=0,
- ymax=1.2,
- xtick={0},
- xticklabels={0},
- ytick={0},
- axis x discontinuity=parallel,
- ]
- \addplot[blue, smooth] coordinates {(4.6,0) (4.7,0.02) (4.8,0.2) (4.9,0.71) (5,1) (5.1,0.71) (5.2,0.2) (5.3,0.02) (5.4,0)};
- \addlegendentry{Narrow-band signal};
- \addplot[red, smooth] coordinates {(2,0) (2.5,0.01) (3,0.05) (5,0.05) (7,0.05) (7.5,0.01) (8,0)};
- \addlegendentry{Spread spectrum signal};
- \end{axis}
- \end{tikzpicture}
- \caption[PSD of a narrow-band and spread spectrum signal]{\acs{PSD} of a narrow-band and spread spectrum signal. Both signals carry the same information and have the equal power. The narrow-band signal concentrates the whole signal power in a narrow frequency band. In contrast, the spread spectrum signal distributes the signal power over a wide frequency band.}
-\end{figure}
-
-\todo{Purpose: Noise immunity}
-
-\todo{Noise like}
-
-\todo{Purpose: Immunity against narrowband disturbances}
-
-\todo{Purpose: Coexistence with other services, multiple access}
-
-\todo{Purpose: Plausible deniability}
-
-\todo{Purpose: Encryption, confidentiality}
-
-\subsection{Direct-Sequence Spread Spectrum}
-
-\todo{pseudorandom number}
-
-\todo{Processing Gain}
-
-\subsection{Frequency-Hopping Spread Spectrum}
-
-\subsection{Time-Hopping Spread Spectrum}
-
-\section{Multi-carrier Modulation}
-
-\todo{OFDM}
+\nocite{rao2018}
\phantomsection
\addcontentsline{toc}{section}{References}