From 19eceedd4943c1b8e3bb079d10983d3fc0c14250 Mon Sep 17 00:00:00 2001 From: Philipp Le Date: Tue, 4 May 2021 00:49:33 +0200 Subject: Typo fixes --- chapter05/content_ch05.tex | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/chapter05/content_ch05.tex b/chapter05/content_ch05.tex index f598e65..033246e 100644 --- a/chapter05/content_ch05.tex +++ b/chapter05/content_ch05.tex @@ -87,7 +87,7 @@ The \index{amplitude modulation} \textbf{\acf{AM}} is the alteration of the carr The carrier is a mono-chromatic signal: \begin{equation} - x_C(t) = \hat{X}_C \cdot \cos\left(2\pi f_C + \varphi_C\right) + x_C(t) = \hat{X}_C \cdot \cos\left(2\pi f_C t + \varphi_C\right) \end{equation} where \begin{itemize} @@ -1063,10 +1063,14 @@ So, the input signal's spectrum consists of a positive and a negative part: The frequencies $\omega_{o,1}$ and $\omega_{o,2}$ are called \index{mirror frequencies} \textbf{mirror frequencies}. \end{definition} +x + \begin{attention} Because of the mirror frequency issue, a filter (\ac{LPF}, \ac{BPF}, etc.) must follow or precede a mixer to eliminate the unwanted mirror frequency. \end{attention} +x + \begin{figure}[H] \subfloat[Input and \acs{LO} signals in the frequency-domain] { -- cgit v1.1