From 40902b30d01ff26deba8af6c7235fd87975c8f75 Mon Sep 17 00:00:00 2001 From: Philipp Le Date: Mon, 4 May 2020 23:49:33 +0200 Subject: Amending chapter 1 --- chapter02/content_ch02.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'chapter02') diff --git a/chapter02/content_ch02.tex b/chapter02/content_ch02.tex index d0cc535..0105403 100644 --- a/chapter02/content_ch02.tex +++ b/chapter02/content_ch02.tex @@ -230,7 +230,7 @@ $w(x)$ is a non-negative weight function, which is $w(x) = 1$ in simple cases li Now, you can prove that the cosine and sine functions are orthogonal to each other. \begin{equation} - \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \cos\left(n \omega_0 t\right) \sin\left(m \omega_0 t\right) \, \mathrm{d} t = 0 \qquad \forall n, m \in \mathbb{Z} + \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \cos\left(n \omega_0 t\right) \sin\left(m \omega_0 t\right) \, \mathrm{d} t = 0 \qquad \forall \; n, m \in \mathbb{Z} \label{eq:ch02:orth_rel_cos_sin} \end{equation} -- cgit v1.1