\chapter{Stochastic and Deterministic Processes} \begin{refsection} \section{Stochastic Processes} \begin{itemize} \item Stochastic processes $\rightarrow$ random signal \item No deterministic description \item Description of random parameters (probability, ...) \end{itemize} \subsection{Statistic Mean} Given is family of curves $\vect{x}(t) = \left\{x_1(t), x_2(t), \dots, x_n(t)\right\}$. $\vect{x}(t)$ is called a \index{random vector} \textbf{random vector}. \begin{figure}[H] \centering \begin{tikzpicture} \begin{axis}[ height={0.25\textheight}, width=0.6\linewidth, scale only axis, xlabel={$t$}, ylabel={$x(t)$}, %grid style={line width=.6pt, color=lightgray}, %grid=both, grid=none, legend pos=north east, axis y line=middle, axis x line=middle, every axis x label/.style={ at={(ticklabel* cs:1.05)}, anchor=north, }, every axis y label/.style={ at={(ticklabel* cs:1.05)}, anchor=east, }, xmin=0, xmax=11, ymin=0, ymax=1.7, xtick={0, 1, ..., 10}, ytick={0, 0.5, ..., 1.5}, xticklabels={0, 1, $t_0$, 3, 4, ..., 10} ] \addplot[black, dashed, smooth, domain=1:10, samples=200] plot (\x,{1.5*abs(sinc((1/(2*pi))*\x))}); \pgfmathsetseed{100} \addplot[red, smooth, domain=1:10, samples=50] plot (\x,{1.5*abs(sinc((1/(2*pi))*\x)) + 0.1*rand}); \addlegendentry{$x_1$}; \pgfmathsetseed{200} \addplot[blue, smooth, domain=1:10, samples=50] plot (\x,{1.5*abs(sinc((1/(2*pi))*\x)) + 0.1*rand}); \addlegendentry{$x_2$}; \pgfmathsetseed{300} \addplot[green, smooth, domain=1:10, samples=50] plot (\x,{1.5*abs(sinc((1/(2*pi))*\x)) + 0.1*rand}); \addlegendentry{$x_3$}; \addplot[black, very thick, dashed] coordinates {(2,0) (2,2.2)}; \end{axis} \end{tikzpicture} \caption{Family of random signals} \end{figure} \begin{itemize} \item The curves are produced by a random process $\vect{x}(t)$. The random process is time-dependent. \item All curves consist of random values, which are gathered around a mean value $\E\left\{\vect{x}(t)\right\}$. \item The random process can emit any value $x$. However, each value $x$ has a certain likelihood $p(x, t)$ of being produced. Again, this likelihood is time-dependent like the stochastic process. \end{itemize} Let's assume that the values are normally distributed. The \index{probability density function} \textbf{\ac{PDF}} $p(x, t)$ of a \index{normal distribution} \textbf{normal distribution} is: \begin{equation} p(x, t) = \frac{1}{\sigma(t) \sqrt{2 \pi}} e^{-\frac{1}{2} \left(\frac{x - \mu(t)}{\sigma(t)}\right)^2} \end{equation} $p(x, t)$ is the likelihood that the stochastic process emits the value $x$ at time instance $t$. Both the mean of the normal distribution $\mu(t)$ and the standard deviation of the normal distribution $\sigma(t)$ are time-dependent. \begin{attention} Do not confuse the mean of the normal distribution $\mu$ and the mean of a series of samples $\E\left\{\cdot\right\}$ (expectation value)! \end{attention} \begin{figure}[H] \centering \begin{tikzpicture} \begin{axis}[ height={0.25\textheight}, width=0.8\linewidth, scale only axis, xlabel={$x$}, ylabel={$p(x, t_0)$}, %grid style={line width=.6pt, color=lightgray}, %grid=both, grid=none, legend pos=north east, axis y line=middle, axis x line=middle, every axis x label/.style={ at={(ticklabel* cs:1.05)}, anchor=north, }, every axis y label/.style={ at={(ticklabel* cs:1.05)}, anchor=east, }, xmin=-1.2, xmax=4.2, ymin=0, ymax=1.2, xtick={-1, 0, 1, 1.47, 2, 3, 4}, ytick={0, 0.5, ..., 2.0}, xticklabels={-1, 0, 1, $\E\left\{\vect{x}(t_0)\right\}$, 2, 3, 4} ] % ยต = 1.47, simga = 0.5 \addplot[red, thick, smooth, domain=, samples=200] plot (\x, {(1/(0.5*sqrt(2*pi)))*exp(-0.5*((\x-1.47)/0.5)^2)}); \addplot[black, very thick, dashed] coordinates {(1.47,0) (1.47,1)}; \end{axis} \end{tikzpicture} \caption{Probability density function for an output value of a stochastic process at time $t_0$ with $\mu(t_0) = 1.47$ and $\sigma(t_0) = 0.5$} \end{figure} Given that \begin{itemize} \item We know neither the mean of the normal distribution $\mu(t)$ nor the standard deviation of the normal distribution $\sigma(t)$. \item We only have $n$ samples of the curves $x_i(t_0)$ ($i \in \mathbb{N}, 0 \leq i \leq n$) at the time instance $t_0$. \item We do know that the random distribution of our samples $x_i(t_0)$ follows the \ac{PDF} $p(x, t_0)$. \end{itemize} \paragraph{How do we get the mean of out samples $\E\left\{X(t_0)\right\}$? (Finite case)} The mean of the samples is the \index{expectation value} \textbf{expectation value} $\E\left\{\vect{x}(t_0)\right\}$. \nomenclature[Se]{$\E\left\{\cdot\right\}$}{Expectation value} To get an approximation, we can calculate the \index{arithmetic mean} \textbf{arithmetic mean} of out $n$ samples: \begin{equation} \E\left\{\vect{x}(t_0)\right\} \approx \frac{1}{n} \sum\limits_{i = 0}^{n} x_i(t_0) \label{eq:ch03:arith_mean} \end{equation} The approximation converges to the real $\E\left\{\vect{x}(t_0)\right\}$ for $n \rightarrow \infty$, because the random distribution of our samples $x_i(t_0)$ follows the \ac{PDF} $p(x, t_0)$. \paragraph{What about an arbitrary \ac{PDF}? (Continuous case)} \begin{itemize} \item We cannot collect an indefinite number of samples. \item However, if the \ac{PDF} is known, we can calculate the mean of our samples. \end{itemize} Extending, the arithmetic mean \eqref{eq:ch03:arith_mean}, with $n \rightarrow \infty$ and using all $x$ but weighted by their \ac{PDF} $p(x, t_0)$, we can determine the expectation value. \begin{definition}{Stochastic mean} The \index{stochastic mean} \textbf{stochastic mean} of a \ac{PDF} is: \begin{equation} \E\left\{\vect{x}(t_0)\right\} = \int\limits_{-\infty}^{\infty} x \cdot p(x, t_0) \; \mathrm{d} x \end{equation}% \nomenclature[Se]{$\E\left\{\vect{x}\right\}$}{Stochastic mean} \end{definition} \begin{fact} In general, stochastic means are time-dependent. \end{fact} \paragraph{Other measures?} The \index{quadratic stochastic mean} \textbf{quadratic stochastic mean}: \begin{equation} \E\left\{\vect{x}^2(t_0)\right\} = \int\limits_{-\infty}^{\infty} x^2 \cdot p(x, t_0) \; \mathrm{d} x \end{equation} \subsection{Temporal Mean} Given is a random time-domain signal $x_i(t)$ (where $i \in \mathbb{N}$ an arbitrary integer index): \begin{figure}[H] \centering \begin{tikzpicture} \begin{axis}[ height={0.25\textheight}, width=0.6\linewidth, scale only axis, xlabel={$t$}, ylabel={$x_i(t)$}, %grid style={line width=.6pt, color=lightgray}, %grid=both, grid=none, legend pos=north east, axis y line=middle, axis x line=middle, every axis x label/.style={ at={(ticklabel* cs:1.05)}, anchor=north, }, every axis y label/.style={ at={(ticklabel* cs:1.05)}, anchor=east, }, xmin=-5.5, xmax=5.5, ymin=0, ymax=3.2, xtick={-5, -4, ..., 5}, ytick={0, 1, ..., 3}, xticklabels={-5, -4, -3, -2, $-\frac{T}{2}$, 0, $\frac{T}{2}$, 2, 3, 4, 5} ] \pgfmathsetseed{100} \addplot[red, smooth, domain=-5:5, samples=50] plot (\x,{1.5 + 0.8*rand}); \addplot[black, thick, dashed] coordinates {(-1,0) (-1,3.2)}; \addplot[black, thick, dashed] coordinates {(1,0) (1,3.2)}; \addplot[black, dashed] coordinates {(-5,1.5) (5,1.5)}; \end{axis} \end{tikzpicture} \caption{Random time-domain signal} \end{figure} \textit{Remark:} The signal can be a sample of a family of signals, but it is not required to be. The temporal mean is calculated as the arithmetic mean with following differences to \eqref{eq:ch03:arith_mean}: \begin{itemize} \item The mean is calculation over the time, not over a number of samples. \item For a time-continuous signal, the sum extends to an integral. \item The arithmetic mean is calculated over the time interval $[-\frac{T}{2}, \frac{T}{2}]$. Let's make the interval indefinite. \end{itemize} \begin{definition}{Temporal mean} The \index{temporal mean} \textbf{temporal mean} of time-domain signal $x_i(t)$ is: \begin{equation} \overline{x_i} = \E\left\{x_i(t)\right\} = \lim\limits_{T \rightarrow \infty} \frac{1}{T} \int\limits_{-\frac{T}{2}}^{\frac{T}{2}} x_i{t} \; \mathrm{d} t \end{equation}% \nomenclature[Sx]{$\overline{x}$, $\E\left\{x_i(t)\right\}$}{Temporal mean} \end{definition} The temporal mean is not time-dependent. \begin{fact} In general, temporal means are sample-dependent. \end{fact} Actually $x_i(t)$ would not need the index $i$ if there is only one sample. Nevertheless, it was kept here, to emphasize the dependency on the sample, in contrast to the dependency on the time of the stochastic mean. \paragraph{Other measures?} The \index{quadratic temporal mean} \textbf{quadratic temporal mean}: \begin{equation} \overline{x^2_i} = \E\left\{x^2_i(t)\right\} = \lim\limits_{T \rightarrow \infty} \frac{1}{T} \int\limits_{-\frac{T}{2}}^{\frac{T}{2}} |x_i{t}|^2 \; \mathrm{d} t \end{equation} \subsection{Ergodic Processes} \begin{definition}{Ergodic process} \index{ergodic process} A process is \textbf{ergodic} if: \begin{enumerate} \item The stochastic means are equal at all times. \begin{equation} \E\left\{\vect{x}(t_0)\right\} = \E\left\{\vect{x}(t_1)\right\} = \dots = \E\left\{\vect{x}\right\} \end{equation} \item The temporal means of all samples are equal. \begin{equation} \overline{x_1} = \overline{x_2} = \dots = \overline{x} \end{equation} \item The stochastic mean equals the temporal mean. \begin{equation} \E\left\{\vect{x}\right\} = \overline{x} = \mu_x \end{equation} \end{enumerate} \end{definition} As a consequence: \begin{itemize} \item One single, sufficiently long, random sample of the process is enough to deduct the statistical properties of an ergodic process. \item The ergodic process is in steady state (\ac{WSS}), i.e., it does not erratically change its behaviour and properties. \end{itemize} \begin{figure}[H] \centering \begin{tikzpicture} \begin{axis}[ height={0.25\textheight}, width=0.6\linewidth, scale only axis, xlabel={$t$}, ylabel={$x_i(t)$}, %grid style={line width=.6pt, color=lightgray}, %grid=both, grid=none, legend pos=north east, axis y line=middle, axis x line=middle, every axis x label/.style={ at={(ticklabel* cs:1.05)}, anchor=north, }, every axis y label/.style={ at={(ticklabel* cs:1.05)}, anchor=east, }, xmin=-5.5, xmax=5.5, ymin=0, ymax=3.2, xtick={-5, -4, ..., 5}, ytick={0, 1, ..., 3}, xticklabels={-5, -4, -3, -2, $-\frac{T}{2}$, 0, $\frac{T}{2}$, 2, 3, 4, 5} ] \pgfmathsetseed{100} \addplot[red, smooth, domain=-5:5, samples=50] plot (\x,{1.5 + 0.8*rand}); \addlegendentry{$x_1$}; \pgfmathsetseed{200} \addplot[blue, smooth, domain=-5:5, samples=50] plot (\x,{1.5 + 0.8*rand}); \addlegendentry{$x_2$}; \pgfmathsetseed{300} \addplot[green, smooth, domain=-5:5, samples=50] plot (\x,{1.5 + 0.8*rand}); \addlegendentry{$x_3$}; \addplot[black, dashed] coordinates {(-5,1.5) (5,1.5)}; \addlegendentry{$\mu_x$}; \end{axis} \end{tikzpicture} \caption{Three samples of the same ergodic process} \end{figure} \subsection{Cross-Correlation} \begin{itemize} \item Imagine you have two random processes. \item They produce the (complex) random vectors $\cmplxvect{x}(t)$ and $\cmplxvect{y}(t)$. \item The random processes can be somehow related (correlated) to each other. But they can also be independent instead. \item How can we find this out? \end{itemize} We need a similarity measure. The cross-correlation is such a measure. \begin{definition}{Cross-correlation of stochastic processes} The \index{cross-correlation!stochastic process} \text{cross-correlation of two stochastic processes} $\cmplxvect{x}(t_1)$ and $\cmplxvect{y}(t_2)$ between the times $t_1$ and $t_2$ is: \begin{equation} \mathrm{R}_{XY}(t_1, t_2) = \E\left\{ \cmplxvect{x}(t_1) \cmplxvect{y}^{*}(t_2) \right\} \end{equation}% \nomenclature[Sr]{$\mathrm{R}_{XY}$}{Cross-correlation of two random vectors}% \nomenclature[Na]{$\left(\cdot\right)^{*}$}{Complex conjugate of $\left(\cdot\right)$} where $\left(\cdot\right)^{*}$ denotes the complex conjugate. \end{definition} The expectation value can be expressed as: \begin{equation} \mathrm{R}_{XY}(t_1, t_2) = \E\left\{ \cmplxvect{x}(t_1) \cmplxvect{y}*(t_2) \right\} = \int\limits_{y = -\infty}^{\infty} \int\limits_{x = -\infty}^{\infty} x y \cdot p(x, y, t_1, t_2) \; \mathrm{d} x \mathrm{d} y \end{equation} $p(x, y, t_1, t_2)$ is the joint \ac{PDF} of the two random processes. It defines the likelihood that $x$ is produced at time $t_1$ \textbf{and} $y$ is produced at time $t_2$. Let's derive a special case for \textbf{ergodic} processes: \begin{itemize} \item The time difference is $\tau = t_2 - t_1$. \item Because of the ergodicity of the two processes, only one sample of each $x_i(t)$ and $y_i(t)$ needs to be taken. \item An estimation for the cross-correlation is averaging the products of the time-shifted samples $x_i(t) \cdot y_i(t+\tau)$. This resembles \end{itemize} Extending this to complex number yields: \begin{equation} \mathrm{R}_{XY}(\tau) = \E\left\{ \cmplxvect{x}(t) \cmplxvect{y}*(t+\tau) \right\} \approx \lim\limits_{T \rightarrow \infty} \frac{1}{T} \int\limits_{t = -\frac{T}{2}}^{\frac{T}{2}} \underline{x}_i^{*}(t) \cdot \underline{x}_i(t+\tau) \; \mathrm{d} t \end{equation} This resembles the cross-correlation of deterministic signals \begin{definition}{Cross-correlation of deterministic signals} The \index{cross-correlation!deterministic signals} \text{cross-correlation of two deterministic signals} $\underline{f}(t_1)$ and $\underline{g}(t_2)$ between the times $\tau = t_2 - t_1$ is: \begin{equation} \left(f \star g\right)(\tau) = \int\limits_{t = -\infty}^{\infty} \underline{f}^{*}(t) \cdot \underline{g}(t+\tau) \; \mathrm{d} t \end{equation}% \nomenclature[N]{$\left(f \ast g\right)(\tau)$}{Cross-correlation of two signals} \end{definition} \begin{attention} You must not confuse the operators for the convolution $*$ and correlation $\star$. \end{attention} For the random signals $x(t)$ and $y(t)$, the cross-correlation can not be determined analytically, but numerically. \begin{equation} \mathrm{R}_{XY}(\tau) \approx \left(x \star y\right)(\tau) \end{equation} \paragraph{What's the use?} \begin{itemize} \item The cross-correlation ``scans'' the two signals for common features. \item The cross-correlation $\mathrm{R}_{XY}(\tau)$ will show a peak at the time shift $\tau$, if \begin{itemize} \item The signals are correlated, i.e., have a common feature. \item The common feature is time-shifted by $\tau$. \end{itemize} \item A flat near $0$ cross-correlation means that the signals are uncorrelated. \end{itemize} \section{Spectral Density} \subsection{Autocorrelation} \subsection{Power Spectral Density} \subsection{Decibel} \section{Noise} \subsection{Types of Noise} \subsection{Thermal Noise} \subsection{White Noise} \subsection{Noise Floor and Noise Figure} \phantomsection \addcontentsline{toc}{section}{References} \printbibliography[heading=subbibliography] \end{refsection}