\chapter{Sampling and Time-Discrete Signals and Systems} \begin{refsection} \section{Time-Discrete Signals} \subsection{Ideal Sampling} % TODO \begin{equation} \begin{split} \underline{x}[n] &= \int\limits_{-\infty}^{\infty} \underline{x}(t) \cdot \delta\left(t - n T_S\right) \, \mathrm{d} t \\ &= \underline{x}\left(n T_S\right) \end{split} \end{equation} \subsection{Discrete-Time Fourier Transform} % TODO \begin{equation} \underline{x}_S(t) = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot \delta(t - n T_S) \end{equation} \begin{equation} \begin{split} \underline{X}_S \left(j \omega\right) &= \mathcal{F} \left\{\underline{x}_S(t)\right\} \\ &= \mathcal{F} \left\{\sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot \delta(t - n T_S)\right\} \\ &= \int\limits_{t = -\infty}^{\infty} \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot \delta(t - n T_S) \cdot e^{-j \omega t} \, \mathrm{d} t \\ &= \sum\limits_{n = -\infty}^{\infty} \int\limits_{t = -\infty}^{\infty} \underline{x}[n] \cdot \delta(t - n T_S) \cdot e^{-j \omega t} \, \mathrm{d} t \\ &= \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{-j \omega n T_S} \end{split} \end{equation} Redefining $\phi = T_S \omega$: \begin{equation} \underline{X}_S \left(j \omega\right) = \underline{X} \left(e^{j \phi}\right) = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{-j \phi n} \end{equation} \subsection{Sampling Theorem and Aliasing} \subsection{Discrete Fourier Transform} \section{Analogies Of Time-Continuous and Time-Discrete Signals and Systems} \subsection{Transforms} \begin{table}[H] \centering \begin{tabular}{|p{0.3\linewidth}||p{0.3\linewidth}|p{0.3\linewidth}|} \hline {} & \textbf{Frequency-Continuous Domain} & \textbf{Frequency-Discrete Domain} \\ \hline \hline \textbf{Time-Continuous Domain} & Fourier transform & Fourier series \\ \hline \textbf{Time-Discrete Domain} & Discrete-Time Fourier transform & Discrete Fourier transform \\ \hline \end{tabular} \end{table} \subsubsection{Obtaining a frequency-continuous domain:} \begin{minipage}{0.45\linewidth} \textbf{From the time-continuous domain (analog signal):} \vspace{0.5em} Fourier transform: \begin{equation*} \underline{X}(j \omega) = \int\limits_{t = -\infty}^{\infty} \underline{x}(t) \cdot e^{-j \omega t} \, \mathrm{d} t \end{equation*} Inverse Fourier transform: \begin{equation*} \underline{x}(t) = \frac{1}{2 \pi} \int\limits_{\omega = -\infty}^{\infty} \underline{X}(j \omega) \cdot e^{+ j \omega t} \, \mathrm{d} \omega \end{equation*} \begin{itemize} \item Continuous time: $t \in \mathbb{R}$ \item Continuous frequency: $\omega \in \mathbb{R}$ \end{itemize} \end{minipage} \hfill \begin{minipage}{0.45\linewidth} \textbf{From the time-discrete domain (digital signal):} \vspace{0.5em} Discrete-time Fourier transform: \begin{equation*} \underline{X}_{2\pi}(e^{j \phi}) = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{- j \phi n} \end{equation*} Inverse discrete-time Fourier transform: \begin{equation*} \underline{x}[n] = \frac{1}{2 \pi} \int\limits_{- \pi}^{+ \pi} \underline{X}_{2\pi}(e^{j \phi}) \cdot e^{+ j \phi n} \, \mathrm{d} \phi \end{equation*} \begin{itemize} \item Discrete time: $n \in \mathbb{Z}$ \item Continuous frequency: $\phi \in \mathbb{R}$ \end{itemize} \end{minipage} \subsubsection{Obtaining a frequency-discrete domain:} \begin{minipage}{0.45\linewidth} \textbf{From the time-continuous domain (analog signal):} \vspace{0.5em} Fourier analysis: \begin{equation*} \underline{X}[k] = \frac{\omega_0}{2 \pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \underline{x}(t) \cdot e^{-j k \omega_0 t} \, \mathrm{d} t \end{equation*} Fourier series: \begin{equation*} \underline{x}(t) = \sum\limits_{k = -\infty}^{\infty} \underline{X}[k] \cdot e^{+ j k \omega_0 t} \end{equation*} \begin{itemize} \item Continuous time: $t \in \mathbb{R}$ \item Discrete frequency: $k \in \mathbb{Z}$ \end{itemize} \end{minipage} \hfill \begin{minipage}{0.45\linewidth} \textbf{From the time-discrete domain (digital signal):} \vspace{0.5em} Discrete Fourier transform: \begin{equation*} \underline{X}[k] = \sum\limits_{n = 0}^{N - 1} \underline{x}[n] \cdot e^{- j \frac{2 \pi}{N} k n} \end{equation*} Inverse discrete Fourier transform: \begin{equation*} \underline{x}[n] = \frac{1}{N} \sum\limits_{k = 0}^{N - 1} \underline{X}[k] \cdot e^{+ j \frac{2 \pi}{N} k n} \end{equation*} \begin{itemize} \item Discrete time: $n \in \mathbb{Z}$ \item Discrete frequency: $k \in \mathbb{Z}$ \end{itemize} \end{minipage} \subsection{Systems} \subsection{Cross-Correlation and Autocorrelation} \subsection{Spectral Density} \subsection{Noise} \section{Digital Signals and Systems} \subsection{Quantization} \subsection{Quantization Error} \subsection{Window Filters} \subsection{Time Recovery} \subsection{Practical Issues} \phantomsection \addcontentsline{toc}{section}{References} \printbibliography[heading=subbibliography] \end{refsection}