% SPDX-License-Identifier: CC-BY-SA-4.0 % % Copyright (c) 2020 Philipp Le % % Except where otherwise noted, this work is licensed under a % Creative Commons Attribution-ShareAlike 4.0 License. % % Please find the full copy of the licence at: % https://creativecommons.org/licenses/by-sa/4.0/legalcode \phantomsection \addcontentsline{toc}{section}{Exercise 4} \section*{Exercise 4} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{question}[subtitle={Sampling Periodic Signals}] \begin{equation*} u(t) = \SI{2}{V} \cos\left(2\pi \cdot \SI{2}{MHz} \cdot t + \SI{60}{\degree}\right) \end{equation*} The signal is sampled with a sampling period of $T_S = \SI{125}{\nano\second}$. The first sample taken is $u(t = 0)$. \begin{tasks} \task Plot the function from $t = 0$ to $t = \SI{1}{\micro\second}$! \task Calculate the samples $n = 0 \dots 8$! \task What is the DTFT of the signal? Hints: \begin{equation*} \begin{split} x[n] = e^{-j a n} &= \underline{X}_{\frac{2\pi}{T_S}}\left(e^{-j T_S \omega}\right) = 2 \pi \cdot \delta \left(\omega + a\right) \\ \cos\left(b\right) &= \frac{1}{2} \left(e^{j b} + e^{-j b}\right) \end{split} \end{equation*} \task Can the DFT directly applied to the signal? If yes, determine the smallest $N$ and give the values of all $\underline{U}[k]$! \task What is the longest possible sampling period? What must be considered at this sampling period? \task Now, the sampling period is changed to $T_S = \SI{0.5}{\micro\second}$. There is no anti-aliasing filter. The reconstruction filter is an ideal low-pass filter with a cut-off frequency of \SI{50}{kHz}. Give the reconstructed output function in the time domain! Give an explanation in the frequency domain! \end{tasks} \end{question} \begin{solution} \begin{tasks} \end{tasks} \end{solution} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{question}[subtitle={Sampling Non-Periodic Signals}] The signal $x[n]$ is given in the time domain. \begin{table}[H] \centering \begin{tabular}{|l|r|r|r|r|r|r|r|r|} \hline $n$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \hline $x[n]$ & 0.5 & 1 & 0 & 0.5 & -0.5 & -1 & -0.5 & -0.75 \\ \hline \end{tabular} \end{table} \begin{tasks} \task The signal is windowed with $N = 4$ starting at $x[n = 0]$. A hamming window with $M = 2$ is applied. Calculate the values of $\underline{x}_W[n]$! Hamming window: \begin{equation*} w[n] = \begin{cases}0.54 - 0.46 \cos\left(\frac{2 \pi n}{M}\right), &\quad 0 \leq n \leq M,\\ 0, &\quad \text{otherwise}.\end{cases} \end{equation*} \task Calculate the discrete Fourier transform of the windowed signal! \task The signal has been sampled with $T_S = \SI{1}{ms}$. What frequency values do the $k$ represent? \end{tasks} \end{question} \begin{solution} \begin{tasks} \task At first the signal is truncated. Only the first $4$ samples are considered. The window function is: \begin{equation*} w[n] = \begin{cases}0.54 - 0.46 \cos\left(\frac{2 \pi n}{M}\right), &\quad 0 \leq n \leq M,\\ 0, &\quad \text{otherwise}.\end{cases} \end{equation*} The signal is then multiplied with the window: \begin{equation*} x_w[n] = x[n] \cdot w[n] \end{equation*} \begin{table}[H] \centering \begin{tabular}{|l|r|r|r|r|} \hline $n$ & 0 & 1 & 2 & 3 \\ \hline \hline $w[n]$ & 0.08 & 1.0 & 0.08 & 0 \\ \hline $x_w[n]$ & 0.02 & 1.0 & -0.04 & 0 \\ \hline \end{tabular} \end{table} \task The signal is periodically repeated. The DFT is calculated over $N = 4$. \begin{equation*} \underline{X}_w[k] = \mathcal{F}_{\text{DFT}}\left\{\underline{x}[n]\right\} = \sum\limits_{n \in N} \underline{x}[n] \cdot e^{-j 2\pi \frac{k}{N} n} \end{equation*} \begin{table}[H] \centering \begin{tabular}{|l|r|r|r|r|} \hline $k$ & 0 & 1 & 2 & 3 \\ \hline $k$ (alternate) & 0 & 1 & -2 & -1 \\ \hline \hline $\underline{X}_w[k]$ & $0.98$ & $(0.06-1j)$ & $-1.02$ & $(0.06+1j)$ \\ \hline $|\underline{X}_w[k]|$ & $0.98$ & $1.00$ & $1.02$ & $1.00$ \\ \hline $\arg\left(\underline{X}_w[k]\right)$ & $0$ & $-1.51 \approx -\pi$ & $3.14 \approx 2\pi$ & $1.51 \approx \pi$ \\ \hline \end{tabular} \end{table} \task \begin{equation*} \begin{split} \phi[k] &= 2 \pi \frac{k}{N} \\ \omega[k] &= \frac{\phi[k]}{T_S} \\ f[k] &= \frac{\omega[k]}{2 \pi} \\ \end{split} \end{equation*} \begin{table}[H] \centering \begin{tabular}{|l|r|r|r|r|} \hline $k$ & 0 & 1 & 2 & 3 \\ \hline $k$ (alternate) & 0 & 1 & -2 & -1 \\ \hline \hline $\phi[k]$ & $0$ & $1.57 \approx \pi$ & $3.14 \approx 2 \pi \equiv -2\pi$ & $4.71 \approx 3 \pi \equiv -\pi$ \\ \hline $\omega[k]$ & $\SI{0}{s^{-1}}$ & $\SI{1570.8}{s^{-1}}$ & $\SI{3141.6}{s^{-1}}$ & $\SI{4712.4}{s^{-1}}$ \\ \hline \hline $f[k]$ & $\SI{0}{Hz}$ & $\SI{250}{Hz}$ & $\SI{500}{Hz} \equiv \SI{-500}{Hz}$ & $\SI{750}{Hz} \equiv \SI{-250}{Hz}$ \\ \hline \end{tabular} \end{table} \end{tasks} \end{solution} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{question}[subtitle={Quantization}] The signal of task 1b) is now quantized. The quantizer has $8$ discrete values. These values are equally distributed between \SI{-2}{V} and \SI{2}{V}. Prior to sampling, the original time-continuous signal passed through an ideal low-pass filter with a cut-off frequency of \SI{4}{MHz}. \begin{tasks} \task Define a mapping from the value-continuous samples to the value-discrete samples! \task The value-discrete samples are now pulse-code modulated. How many bits are required? \task Determine the quantization error for each value-discrete sample! How much is the signal-to-noise ratio? \task 3 bits are a very poor resolution. How many bits are appropriate for the quantizer to obtain the best signal-to-noise ratio? Effects of the window filter are neglected. Assume that the signal has passed through a processing chain with a total gain of \SI{25}{dB} and noise figure of \SI{12}{dB} prior to quantization. The input of the quantizer has an impedance of \SI{50}{\ohm}. % 14 bits \end{tasks} \end{question} \begin{solution} \begin{tasks} \end{tasks} \end{solution} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\begin{question}[subtitle={Decibel}] % \begin{tasks} % \end{tasks} %\end{question} % %\begin{solution} % \begin{tasks} % \end{tasks} %\end{solution}