% SPDX-License-Identifier: CC-BY-SA-4.0 % % Copyright (c) 2020 Philipp Le % % Except where otherwise noted, this work is licensed under a % Creative Commons Attribution-ShareAlike 4.0 License. % % Please find the full copy of the licence at: % https://creativecommons.org/licenses/by-sa/4.0/legalcode \phantomsection \addcontentsline{toc}{section}{Exercise 4} \section*{Exercise 4} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{question}[subtitle={Sampling Periodic Signals}] \begin{equation*} u(t) = \SI{2}{V} \cdot \cos\left(2\pi \cdot \SI{2}{MHz} \cdot t + \SI{60}{\degree}\right) \end{equation*} The signal is sampled with a sampling period of $T_S = \SI{125}{\nano\second}$. The first sample taken is $u(t = 0)$. \begin{tasks} \task Plot the function from $t = 0$ to $t = \SI{1}{\micro\second}$! \task Calculate the samples $n = 0 \dots 8$! \task What is the DTFT of the signal? Hints: \begin{equation*} \begin{split} x[n] = e^{-j a n} &= \underline{X}_{2\pi}\left(e^{-j \phi}\right) = 2 \pi \sum\limits_{l = -\infty}^{\infty} \delta \left(\phi + a - 2\pi l\right) \\ \cos\left(b\right) &= \frac{1}{2} \left(e^{j b} + e^{-j b}\right) \end{split} \end{equation*} \task Can the DFT directly applied to the signal? If yes, determine the smallest $N$ and give the values of all $\underline{U}[k]$! \task What is the longest possible sampling period? What must be considered at this sampling period? \task Now, the sampling period is changed to $T_S = \SI{0.5}{\micro\second}$. There is no anti-aliasing filter. The reconstruction filter is an ideal low-pass filter with a cut-off frequency of $\SI{2.5}{MHz}$. Give the reconstructed output function in the time domain! Give an explanation in the frequency domain! \end{tasks} \end{question} \begin{solution} \begin{tasks} \task \begin{figure}[H] \centering \begin{tikzpicture} \begin{axis}[ height={0.25\textheight}, width=0.8\linewidth, scale only axis, xlabel={$t$ in \si{\micro\second}}, ylabel={$u(t)$}, %grid style={line width=.6pt, color=lightgray}, %grid=both, grid=none, legend pos=outer north east, axis y line=middle, axis x line=middle, every axis x label/.style={ at={(ticklabel* cs:1.05)}, anchor=north, }, every axis y label/.style={ at={(ticklabel* cs:1.05)}, anchor=east, }, xmin=-0.1, xmax=1.1, ymin=-2.2, ymax=2.2, xtick={0,0.125,...,1}, %xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$}, %ytick={0}, ] \addplot[blue, dashed, smooth, domain=0:1, samples=50] plot(\x, {2*cos(deg(2*pi*2*\x)+60)}); %\addlegendentry{$u(t)$}; \pgfplotsinvokeforeach{0,0.125,...,1}{ \addplot[red] coordinates {(#1,0) (#1,{2*cos(deg(2*pi*2*#1)+60)})}; \addplot[red, only marks, mark=o] coordinates {(#1,{2*cos(deg(2*pi*2*#1)+60)})}; } \end{axis} \end{tikzpicture} \end{figure} \task \begin{table}[H] \centering \begin{tabular}{|l|r|r|r|r|r|r|r|r|r|} \hline $n$ & $0$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ \\ \hline $t$ in \si{\micro\second} & $0.0$ & $0.125$ & $0.25$ & $0.375$ & $0.5$ & $0.625$ & $0.75$ & $0.875$ & $1.0$ \\ \hline \hline $u[n]$ in \si{V} & $1.0$ & $-1.73$ & $-1.0$ & $1.73$ & $1.0$ & $-1.73$ & $-1.0$ & $1.73$ & $1.0$ \\ \hline \end{tabular} \end{table} \task $t = n T_S$ due to the sampling: \begin{equation*} \begin{split} u[n] &= \SI{2}{V} \cdot \cos\left(2\pi \cdot \SI{2}{MHz} \cdot n T_S + \SI{60}{\degree}\right) \\ &= \SI{1}{V} \cdot \left( e^{j \left(2\pi \cdot \SI{2}{MHz} \cdot n T_S + \SI{60}{\degree}\right)} + e^{-j \left(2\pi \cdot \SI{2}{MHz} \cdot n T_S + \SI{60}{\degree}\right)} \right) \\ &= \SI{1}{V} \cdot \left( e^{j \SI{60}{\degree}} \cdot e^{j \cdot 2\pi \cdot \SI{2}{MHz} \cdot n T_S} + e^{-j \SI{60}{\degree}} \cdot e^{-j \cdot 2\pi \cdot \SI{2}{MHz} \cdot n T_S} \right) \end{split} \end{equation*} The DTFT is: \begin{equation*} \begin{split} \underline{U}_{2\pi}\left(e^{-j \phi}\right) &= \SI{2}{V} \cdot \pi \sum\limits_{l = -\infty}^{\infty} \left( e^{j \SI{60}{\degree}} \cdot \delta\left(\phi - \left(2\pi \cdot \SI{2}{MHz} \cdot T_S\right) - 2\pi l\right)\right. \\ &\qquad + \left.e^{-j \SI{60}{\degree}} \cdot \delta\left(\phi + \left(2\pi \cdot \SI{2}{MHz} \cdot T_S\right) - 2\pi l\right) \right) \end{split} \end{equation*} \task Yes, it is periodic with $T_0=\SI{500}{ns}$. This means: \begin{equation*} N = \frac{T_0}{T_S} = 4 \end{equation*} The DFT over $N=4$ is: \begin{equation*} \begin{split} \underline{X}[k] &= \sum\limits_{n=0}^{N-1} \underline{x}[n] \cdot e^{-j 2\pi \frac{k}{N} n} \end{split} \end{equation*} \begin{equation*} \begin{split} \phi[k] &= 2 \pi \frac{k}{N} \\ \omega[k] &= \frac{\phi[k]}{T_S} \\ f[k] &= \frac{\omega[k]}{2 \pi} \\ \end{split} \end{equation*} \begin{table}[H] \centering \begin{tabular}{|l|r|r|r|r|} \hline $k$ & $0$ & $1$ & $2$ & $3$ \\ \hline $k$ (alternate) & $0$ & $1$ & $-2$ & $-1$ \\ \hline \hline $\phi[k]$ & $0$ & $1.57 \approx \pi$ & $3.14 \approx 2 \pi \equiv -2\pi$ & $4.71 \approx 3 \pi \equiv -\pi$ \\ \hline $\omega[k]$ & $\SI{0}{{\micro\second}^{-1}}$ & $\SI{12.57}{{\micro\second}^{-1}}$ & $\SI{25.13}{{\micro\second}^{-1}}$ & $\SI{37.7}{{\micro\second}^{-1}}$ \\ \hline $f[k]$ & $\SI{0}{MHz}$ & $\SI{2}{MHz}$ & $\SI{4}{MHz} \equiv \SI{-4}{MHz}$ & $\SI{6}{MHz} \equiv \SI{-2}{MHz}$ \\ \hline \hline $\underline{U}[k]$ & $0$ & $(2+3.46j)$ & $0$ & $(2-3.46j)$ \\ \hline $|\underline{U}[k]|$ & $0.0$ & $4.0$ & $0.0$ & $4.0$ \\ \hline $\arg\left(\underline{U}[k]\right)$ & $\SI{3.14}{rad} \approx \SI{360}{\degree}$ & $\SI{1.05}{rad} \approx \SI{60}{\degree}$ & $\SI{3.14}{rad} \approx \SI{360}{\degree}$ & $\SI{-1.05}{rad} \approx \SI{-60}{\degree}$ \\ \hline \end{tabular} \end{table} \task \begin{itemize} \item Minimum possible sampling frequency is \SI{4}{MHz}. Anything below, will violate the Shannon-Nyquist theorem and cause aliasing. \item The longest possible sampling period is therefore \SI{250}{ns}. \item At $T_S = \SI{250}{ns}$, the sampling phase must be considered, too. \begin{itemize} \item It must be shifted by $\SI{+60}{\degree}$, so that the maxima of $u(t)$ are sampled. \item This retains the amplitude of \SI{2}{V}. \item A timing error will effectively reduce the amplitude of the sampled signal in relation to the original signal. \item At a timing error of $\Delta T_S = \SI{125}{ns}$, all samples will be zero, because the Dirac comb used for sampling is orthogonal to the original signal. \end{itemize} \end{itemize} \task The sampling period of \SI{500}{ns} violates the Shannon-Nyquist theorem and causes aliasing. \begin{figure}[H] \subfloat[Original signal $\underline{U}\left(j\omega\right)$] { \centering \begin{tikzpicture} \begin{axis}[ height={0.15\textheight}, width=0.25\linewidth, scale only axis, xlabel={$\omega$}, ylabel={$|\underline{U}\left(j\omega\right)|$}, %grid style={line width=.6pt, color=lightgray}, %grid=both, grid=none, legend pos=north east, axis y line=middle, axis x line=middle, every axis x label/.style={ at={(ticklabel* cs:1.05)}, anchor=north, }, every axis y label/.style={ at={(ticklabel* cs:1.05)}, anchor=east, }, xmin=-1.5, xmax=1.5, ymin=0, ymax=1.2, xtick={-1, -0.5, 0, 0.5, 1}, xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$}, ytick={0}, %ytick={0, 1}, %yticklabels={0, $\SI{}$} ] \draw[-latex, red, very thick] (axis cs:1,0) -- (axis cs:1,0.8); %node[left,align=right,anchor=north,rotate=90,yshift=-5mm]{$\arg\left(\underline{U}\left(j\omega_S\right)\right) = \SI{60}{\degree}$}; \draw[-latex, green, very thick] (axis cs:-1,0) -- (axis cs:-1,0.8); %node[left,align=right,anchor=north,rotate=90,yshift=-5mm]{$\arg\left(\underline{U}\left(-j\omega_S\right)\right) = \SI{-60}{\degree}$}; \end{axis} \end{tikzpicture} } \hfill \subfloat[Spectrum of the Dirac comb $\frac{2 \pi}{T} \Sha_{\frac{2 \pi}{T}}(\omega)$] { \centering \begin{tikzpicture} \begin{axis}[ height={0.15\textheight}, width=0.27\linewidth, scale only axis, xlabel={$t$}, ylabel={$|\frac{2 \pi}{T} \Sha_{\frac{2 \pi}{T}}(\omega)|$}, %grid style={line width=.6pt, color=lightgray}, %grid=both, grid=none, legend pos=north east, axis y line=middle, axis x line=middle, every axis x label/.style={ at={(ticklabel* cs:1.05)}, anchor=north, }, every axis y label/.style={ at={(ticklabel* cs:1.05)}, anchor=east, }, xmin=-2.5, xmax=2.5, ymin=0, ymax=1.2, xtick={-2, ..., 2}, xticklabels={$-2 \omega_S$, $- \omega_S$, $0$, $\omega_S$, $2 \omega_S$}, ytick={0}, ] \pgfplotsinvokeforeach{-3, -2, ..., 3}{ \draw[-latex, blue, very thick] (axis cs:#1,0) -- (axis cs:#1,1); } \end{axis} \end{tikzpicture} } \hfill \subfloat[Sampled signal $\underline{U}_S\left(j\omega\right)$, showing aliasing] { \centering \begin{tikzpicture} \begin{axis}[ height={0.15\textheight}, width=0.27\linewidth, scale only axis, xlabel={$\omega$}, ylabel={$|\underline{U}_S\left(j\omega\right)|$}, %grid style={line width=.6pt, color=lightgray}, %grid=both, grid=none, legend pos=north east, axis y line=middle, axis x line=middle, every axis x label/.style={ at={(ticklabel* cs:1.05)}, anchor=north, }, every axis y label/.style={ at={(ticklabel* cs:1.05)}, anchor=east, }, xmin=-2.5, xmax=2.5, ymin=0, ymax=1.2, xtick={-2, -1, -0.5, 0, 0.5, 1, 2}, xticklabels={$-2 \omega_S$, $- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$, $2 \omega_S$}, ytick={0}, ] \pgfplotsinvokeforeach{-3, -2, ..., 3}{ \draw[-latex, blue, dashed, very thick] (axis cs:#1,0) -- (axis cs:#1,1); \draw[-latex, green, very thick] (axis cs:{#1-0.01},0) -- (axis cs:{#1-0.01},0.8); \draw[-latex, red, very thick] (axis cs:{#1+0.01},0) -- (axis cs:{#1+0.01},0.8); } \end{axis} \end{tikzpicture} } \end{figure} \begin{itemize} \item The spectral components of $\SI{+2}{MHz}$ (with $e^{j \SI{60}{\degree}}$) and $\SI{-2}{MHz}$ (with $e^{j \SI{-60}{\degree}}$) superimpose at \SI{0}{Hz} (DC). \item The resulting component at \SI{0}{Hz} is the addition if two complex numbers (see Part c) ): \begin{equation*} \underline{U}_S\left(j 0\right) = \SI{2}{V} \cdot \pi \underbrace{\left(e^{j \SI{60}{\degree}} + e^{j \SI{-60}{\degree}}\right)}_{= 1} \delta(\omega) = \SI{2}{V} \cdot \pi \cdot \delta(\omega) \end{equation*} \item Applying the reconstruction filter gives the spectrum of the reconstructed signal: \begin{equation*} \underline{U}_R\left(j \omega\right) = \SI{2}{V} \cdot \pi \cdot \delta(\omega) \end{equation*} \item The inverse DTFT is: \begin{equation*} u_R(t) = \SI{1.0}{V} \end{equation*} \item The reconstructed signal is a DC signal of \SI{1.0}{V}. \end{itemize} \begin{figure}[H] \centering \begin{tikzpicture} \begin{axis}[ height={0.15\textheight}, width=0.8\linewidth, scale only axis, xlabel={$t$ in \si{\micro\second}}, ylabel={$u(t)$}, %grid style={line width=.6pt, color=lightgray}, %grid=both, grid=none, legend pos=outer north east, axis y line=middle, axis x line=middle, every axis x label/.style={ at={(ticklabel* cs:1.05)}, anchor=north, }, every axis y label/.style={ at={(ticklabel* cs:1.05)}, anchor=east, }, xmin=-0.1, xmax=1.1, ymin=-2.2, ymax=2.2, xtick={0,0.125,...,1}, %xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$}, %ytick={0}, ] \addplot[blue, dashed, smooth, domain=0:1, samples=50] plot(\x, {2*cos(deg(2*pi*2*\x)+60)}); \addlegendentry{$u(t)$}; \addplot[olive] coordinates {(0,1) (0.5,1) (1,1)}; \addlegendentry{$u_R(t)$}; \pgfplotsinvokeforeach{0,0.5,1}{ \addplot[red] coordinates {(#1,0) (#1,{2*cos(deg(2*pi*2*#1)+60)})}; \addplot[red, only marks, mark=o] coordinates {(#1,{2*cos(deg(2*pi*2*#1)+60)})}; } \end{axis} \end{tikzpicture} \end{figure} \end{tasks} \end{solution} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{question}[subtitle={Sampling Non-Periodic Signals}] The signal $x[n]$ is given in the time domain. \begin{table}[H] \centering \begin{tabular}{|l|r|r|r|r|r|r|r|r|} \hline $n$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \hline $x[n]$ & 0.5 & 1 & 0 & 0.5 & -0.5 & -1 & -0.5 & -0.75 \\ \hline \end{tabular} \end{table} \begin{tasks} \task The signal is windowed with $N = 4$ starting at $x[n = 0]$. A hamming window with $M = 2$ is applied. Calculate the values of $\underline{x}_W[n]$! Hamming window: \begin{equation*} w[n] = \begin{cases}0.54 - 0.46 \cos\left(\frac{2 \pi n}{M}\right), &\quad 0 \leq n \leq M,\\ 0, &\quad \text{otherwise}.\end{cases} \end{equation*} \task Calculate the discrete Fourier transform of the windowed signal! \task The signal has been sampled with $T_S = \SI{1}{ms}$. What frequency values do the $k$ represent? \end{tasks} \end{question} \begin{solution} \begin{tasks} \task At first the signal is truncated. Only the first $4$ samples are considered. The window function is: \begin{equation*} w[n] = \begin{cases}0.54 - 0.46 \cos\left(\frac{2 \pi n}{M}\right), &\quad 0 \leq n \leq M,\\ 0, &\quad \text{otherwise}.\end{cases} \end{equation*} The signal is then multiplied with the window: \begin{equation*} x_w[n] = x[n] \cdot w[n] \end{equation*} \begin{table}[H] \centering \begin{tabular}{|l|r|r|r|r|} \hline $n$ & 0 & 1 & 2 & 3 \\ \hline \hline $w[n]$ & 0.08 & 1.0 & 0.08 & 0 \\ \hline $x_w[n]$ & 0.02 & 1.0 & -0.04 & 0 \\ \hline \end{tabular} \end{table} \task The signal is periodically repeated. The DFT is calculated over $N = 4$. \begin{equation*} \underline{X}_w[k] = \mathcal{F}_{\text{DFT}}\left\{\underline{x}[n]\right\} = \sum\limits_{n \in N} \underline{x}[n] \cdot e^{-j 2\pi \frac{k}{N} n} \end{equation*} \begin{table}[H] \centering \begin{tabular}{|l|r|r|r|r|} \hline $k$ & 0 & 1 & 2 & 3 \\ \hline $k$ (alternate) & 0 & 1 & -2 & -1 \\ \hline \hline $\underline{X}_w[k]$ & $0.98$ & $(0.06-1j)$ & $-1.02$ & $(0.06+1j)$ \\ \hline $|\underline{X}_w[k]|$ & $0.98$ & $1.00$ & $1.02$ & $1.00$ \\ \hline $\arg\left(\underline{X}_w[k]\right)$ & $0$ & $-1.51 \approx -\pi$ & $3.14 \approx 2\pi$ & $1.51 \approx \pi$ \\ \hline \end{tabular} \end{table} \task \begin{equation*} \begin{split} \phi[k] &= 2 \pi \frac{k}{N} \\ \omega[k] &= \frac{\phi[k]}{T_S} \\ f[k] &= \frac{\omega[k]}{2 \pi} \\ \end{split} \end{equation*} \begin{table}[H] \centering \begin{tabular}{|l|r|r|r|r|} \hline $k$ & 0 & 1 & 2 & 3 \\ \hline $k$ (alternate) & 0 & 1 & -2 & -1 \\ \hline \hline $\phi[k]$ & $0$ & $1.57 \approx \pi$ & $3.14 \approx 2 \pi \equiv -2\pi$ & $4.71 \approx 3 \pi \equiv -\pi$ \\ \hline $\omega[k]$ & $\SI{0}{s^{-1}}$ & $\SI{1570.8}{s^{-1}}$ & $\SI{3141.6}{s^{-1}}$ & $\SI{4712.4}{s^{-1}}$ \\ \hline \hline $f[k]$ & $\SI{0}{Hz}$ & $\SI{250}{Hz}$ & $\SI{500}{Hz} \equiv \SI{-500}{Hz}$ & $\SI{750}{Hz} \equiv \SI{-250}{Hz}$ \\ \hline \end{tabular} \end{table} \end{tasks} \end{solution} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{question}[subtitle={Quantization}] The signal of Task 1b) is now quantized. The quantizer has $8$ discrete values. These values are equally distributed between \SI{-2}{V} and \SI{2}{V}. Prior to sampling, the original time-continuous signal passed through an ideal low-pass filter with a cut-off frequency of \SI{4}{MHz}. \begin{tasks} \task Define a mapping from the value-continuous samples to the value-discrete samples! \task The value-discrete samples are now pulse-code modulated. How many bits are required? \task What is the resulting data (signal from Task 1b) )? \task Determine the quantization error for each value-discrete sample! How much is the signal-to-quantization-noise ratio? \task 3 bits are a very poor resolution. How many bits are appropriate for the quantizer to obtain the best signal-to-noise ratio? Effects of the window filter are neglected. Assume that the signal has passed through a processing chain with a total gain of \SI{24}{dB}, noise figure of \SI{12}{dB} and bandwidth of \SI{4}{MHz} prior to quantization. The input of the quantizer has an impedance of \SI{50}{\ohm}. % 14 bits \end{tasks} \end{question} \begin{solution} \begin{tasks} \task \begin{itemize} \item $\hat{U}_L = \SI{-2}{V}$ \item $\hat{U}_H = \SI{2}{V}$ \item $K = 8$ \end{itemize} \begin{equation*} \Delta \hat{U} = \frac{\hat{U}_H - \hat{U}_L}{K - 1} = \SI{0.57}{V} \end{equation*} The boundaries for the rounding quantizer are distributed $\pm \frac{1}{2} \Delta \hat{U}$ around each mean. \begin{table}[H] \begin{tabular}{|r|r|r|r|} \hline From & To & Maps to & PCM data \\ \hline \hline $-\infty$ & $\SI{-1.71}{V}$ & $\SI{-2.0}{V}$ & 0 \\ $\SI{-1.71}{V}$ & $\SI{-1.14}{V}$ & $\SI{-1.43}{V}$ & 1 \\ $\SI{-1.14}{V}$ & $\SI{-0.57}{V}$ & $\SI{-0.86}{V}$ & 2 \\ $\SI{-0.57}{V}$ & $\SI{-0.0}{V}$ & $\SI{-0.29}{V}$ & 3 \\ $\SI{0.0}{V}$ & $\SI{0.57}{V}$ & $\SI{0.29}{V}$ & 4 \\ $\SI{0.57}{V}$ & $\SI{1.14}{V}$ & $\SI{0.86}{V}$ & 5 \\ $\SI{1.14}{V}$ & $\SI{1.71}{V}$ & $\SI{1.43}{V}$ & 6 \\ $\SI{1.71}{V}$ & $\infty$ & $\SI{2.0}{V}$ & 7 \\ \hline \end{tabular} \end{table} \task \begin{equation*} B \geq \log_2 \left(K\right) = 3 \end{equation*} Minimum 3 bits. \task \begin{table}[H] \centering \begin{tabular}{|l|r|r|r|r|r|} \hline $n$ & $0$ & $1$ & $2$ & $3$ & $4$ \\ \hline \hline $u[n]$ in \si{V} & $1.0$ & $-1.73$ & $-1.0$ & $1.73$ & $1.0$ \\ \hline Quantized values in \si{V} & $0.86$ & $-2.0$ & $-0.86$ & $2.0$ & $0.86$ \\ \hline PCM data & $\left(101\right)_2$ & $\left(000\right)_2$ & $\left(010\right)_2$ & $\left(111\right)_2$ & $\left(101\right)_2$ \\ \hline \hline $n$ & $5$ & $6$ & $7$ & $8$ & \\ \hline \hline $u[n]$ in \si{V} & $-1.73$ & $-1.0$ & $1.73$ & $1.0$ & \\ \hline Quantized values in \si{V} & $-2.0$ & $-0.86$ & $2.0$ & $0.86$ & \\ \hline PCM data & $\left(000\right)_2$ & $\left(010\right)_2$ & $\left(111\right)_2$ & $\left(101\right)_2$ & \\ \hline \end{tabular} \end{table} \task \begin{table}[H] \centering \begin{tabular}{|l|r|r|r|r|r|} \hline $n$ & $0$ & $1$ & $2$ & $3$ & $4$ \\ \hline \hline $u[n]$ in \si{V} & $1.0$ & $-1.73$ & $-1.0$ & $1.73$ & $1.0$ \\ \hline Quantized values in \si{V} & $0.86$ & $-2.0$ & $-0.86$ & $2.0$ & $0.86$ \\ \hline Quantization error in \si{V} & $0.14$ & $0.27$ & $0.14$ & $0.27$ & $0.14$ \\ \hline \hline $n$ & $5$ & $6$ & $7$ & $8$ & \\ \hline \hline $u[n]$ in \si{V} & $-1.73$ & $-1.0$ & $1.73$ & $1.0$ & \\ \hline Quantized values in \si{V} & $-2.0$ & $-0.86$ & $2.0$ & $0.86$ & \\ \hline Quantization error in \si{V} & $0.27$ & $0.14$ & $0.27$ & $0.14$ & \\ \hline \end{tabular} \end{table} The signal-to-quantization-noise ratio for the sine wave is: \begin{equation*} \mathrm{SQNR} = \SI{1.761}{dB} + B \cdot \SI{6.02}{dB} = \SI{19.82}{dB} \end{equation*} \task \begin{itemize} \item The RMS value of the signal is $U_{\mathrm{RMS}} = \frac{\SI{2}{V}}{\sqrt{2}} = \SI{1.41}{V}$ \item The signal power is $P_S = \frac{U_{\mathrm{RMS}}^2}{R} = \SI{39.8}{mW} \equiv L_{P,S} = \SI{16}{dBm}$ \item The thermal noise floor is $\SI{-174}{dBm/Hz}$ \item At $\SI{4}{MHz} \equiv \SI{66}{dBHz}$, the thermal noise power is $\SI{-174}{dBm/Hz} + \SI{66}{dBHz} = \SI{-108}{dBm}$ \item The gain and noise factor is applied to the thermal noise, resulting in a noise power of $L_{P,N} = \SI{-108}{dBm} + \SI{24}{dB} + \SI{12}{dB} = \SI{-70}{dBm}$ \item \textit{Note that the gain is not applied to the signal power, because it is already known/given at the quantizer input.} \item The signal-to-noise ratio is $L_{\mathrm{SNR}} = L_{P,S} - L_{P,N} = \SI{16}{dBm} - \SI{-71}{dBm} = \SI{86}{dB}$ \item The signal-to-quantization-noise ratio should not be grater than the signal-to-noise ratio, because otherwise the thermal noise would dominate the quantization noise. \begin{equation*} L_{\mathrm{SQNR}} \stackrel{!}{=} L_{\mathrm{SNR}} \end{equation*} \item The number of bits must be at least \begin{equation*} B \geq \frac{L_{\mathrm{SQNR}} - \SI{1.761}{dB}}{\SI{6.02}{dB}} = 14 \end{equation*} \end{itemize} \end{tasks} \end{solution} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\begin{question}[subtitle={Decibel}] % \begin{tasks} % \end{tasks} %\end{question} % %\begin{solution} % \begin{tasks} % \end{tasks} %\end{solution}