% SPDX-License-Identifier: CC-BY-SA-4.0 % % Copyright (c) 2022 Philipp Le % % Except where otherwise noted, this work is licensed under a % Creative Commons Attribution-ShareAlike 4.0 License. % % Please find the full copy of the licence at: % https://creativecommons.org/licenses/by-sa/4.0/legalcode \phantomsection \addcontentsline{toc}{section}{Exercise 8} \section*{Exercise 8} % Information Content % Shannon Entropy % Source Efficiency %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{question}[subtitle={Information}] A discrete memoryless source has the source alphabet with the probabilities of the symbols: \begin{table}[H] \centering \begin{tabular}{|l|l|l|l|l|} \hline Symbol & $s_1$ & $s_2$ & $s_3$ & $s_4$ \\ \hline Probability & $0.5$ & $0.25$ & $0.125$ & $0.125$ \\ \hline \end{tabular} \end{table} \begin{tasks} \task Determine the information content of each symbol! \task Determine the Shannon entropy of the source! \task How much is the source efficiency? \end{tasks} \end{question} \begin{solution} \begin{tasks} \task The information content is in general: \begin{equation*} \mathrm{I}(s_i) = \log_2 \left(\frac{1}{p_i}\right) \end{equation*} For the given symbols, their information content is: \begin{table}[H] \centering \begin{tabular}{|l|l|l|l|l|} \hline Symbol & $s_1$ & $s_2$ & $s_3$ & $s_4$ \\ \hline Probability & $0.5$ & $0.25$ & $0.125$ & $0.125$ \\ \hline Information Content & $1$ & $2$ & $3$ & $3$ \\ \hline \end{tabular} \end{table} Note: The information content is a property of the symbol! \task The Shannon entropy is in general: \begin{equation*} \begin{split} \mathrm{H}(X) &= - \sum\limits_{i=1}^{M} p_i \log_2 \left(p_i\right) \\ &= \sum\limits_{i=1}^{M} p_i \cdot \mathrm{I}(s_i) \end{split} \end{equation*} For this task: \begin{equation*} \begin{split} \mathrm{H}(X) &= \left(0.5 \cdot 1\right) + \left(0.25 \cdot 2\right) + \left(0.125 \cdot 3\right) + \left(0.125 \cdot 3\right) \\ &= 0.5 + 0.5 + 0.375 + 0.375 \\ &= 1.75 \end{split} \end{equation*} Note: The Shannon entropy is a property of the source! \task We need the decision quantity: \begin{equation*} \mathrm{D}(X) = \log_2 \left(M\right) = 2 \end{equation*} with $M = 4$ which is the number of symbols in the alphabet. The source efficiency is: \begin{equation*} \eta_X = \frac{\mathrm{H}(X)}{\mathrm{D}(X)} = \frac{1.75}{2} = 0.875 \end{equation*} \end{tasks} \end{solution} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{question}[subtitle={Source Coding}] A input source alphabet has the symbols $s_1 = (000)_2$, $s_2 = (001)_2$, $s_3 = (010)_2$, $s_4 = (011)_2$, $s_5 = (100)_2$, $s_6 = (101)_2$, $s_7 = (110)_2$ and $s_8 = (111)_2$ with the following probabilities: \begin{table}[H] \centering \begin{tabular}{|l|l|l|l|l|l|l|l|l|} \hline Symbol & $s_1$ & $s_2$ & $s_3$ & $s_4$ & $s_5$ & $s_6$ & $s_7$ & $s_8$ \\ \hline Sequence & $(000)_2$ & $(001)_2$ & $(010)_2$ & $(011)_2$ & $(100)_2$ & $(101)_2$ & $(110)_2$ & $(111)_2$ \\ \hline Probability & $0.4$ & $0.1$ & $0.05$ & $0.05$ & $0.15$ & $0.025$ & $0.135$ & $0.09$ \\ \hline \end{tabular} \end{table} \begin{tasks} \task Define a source coding using the Shannon-Fano algorithm. \task Encode the message $\left(000001101110\right)_2$! \task Decode the message $\left(01100010100\right)_2$! \end{tasks} \end{question} \begin{solution} \begin{tasks} \task We subsequently divide the symbols into portions of equal probability until each portion only has one symbol: \begin{enumerate} \item Division of all symbols into: $S_{0} = \left\{s_1, s_2\right\}$ and $S_{1} = \left\{s_3, s_4, s_5, s_6, s_7, s_8\right\}$ with $P\left(S_{0}\right) = 0.5$ and $P\left(S_{1}\right) = 0.5$ \item Division of $S_{0}$ into: $S_{00} = \left\{s_1\right\}$ and $S_{01} = \left\{s_2\right\}$ with $P\left(S_{00}\right) = 0.4$ and $P\left(S_{01}\right) = 0.1$ (no better balancing possible; all portions contain only one element) \item Division of $S_{1}$ into: $S_{10} = \left\{s_3, s_4, s_5\right\}$ and $S_{11} = \left\{s_6, s_7, s_8\right\}$ with $P\left(S_{10}\right) = 0.25$ and $P\left(S_{11}\right) = 0.25$ \item Division of $S_{10}$ into: $S_{100} = \left\{s_3, s_4\right\}$ and $S_{101} = \left\{s_5\right\}$ with $P\left(S_{100}\right) = 0.1$ and $P\left(S_{101}\right) = 0.15$ \item Division of $S_{11}$ into: $S_{110} = \left\{s_6, s_8\right\}$ and $S_{111} = \left\{s_7\right\}$ with $P\left(S_{110}\right) = 0.115$ and $P\left(S_{111}\right) = 0.135$ \item Division of $S_{100}$ into: $S_{1000} = \left\{s_3\right\}$ and $S_{1001} = \left\{s_4\right\}$ with $P\left(S_{1000}\right) = 0.05$ and $P\left(S_{1001}\right) = 0.05$ (all portions contain only one element) \item Division of $S_{110}$ into: $S_{1100} = \left\{s_6\right\}$ and $S_{1101} = \left\{s_8\right\}$ with $P\left(S_{1100}\right) = 0.025$ and $P\left(S_{1101}\right) = 0.9$ (no better balancing possible; all portions contain only one element) \end{enumerate} The encoding is now: \begin{table}[H] \centering \begin{tabular}{|l|l|l|l|} \hline Symbol & Probability & Portion & Codeword \\ \hline \hline $s_1 = (000)_2$ & $0.4$ & $S_{00}$ & $(00)_2$ \\ \hline $s_2 = (001)_2$ & $0.1$ & $S_{01}$ & $(01)_2$ \\ \hline $s_3 = (010)_2$ & $0.05$ & $S_{1000}$ & $(1000)_2$ \\ \hline $s_4 = (011)_2$ & $0.05$ & $S_{1001}$ & $(1001)_2$ \\ \hline $s_5 = (100)_2$ & $0.15$ & $S_{101}$ & $(101)_2$ \\ \hline $s_6 = (101)_2$ & $0.025$ & $S_{1100}$ & $(1100)_2$ \\ \hline $s_7 = (110)_2$ & $0.135$ & $S_{111}$ & $(111)_2$ \\ \hline $s_8 = (111)_2$ & $0.09$ & $S_{1101}$ & $(1101)_2$ \\ \hline \end{tabular} \end{table} Here, you see that a more probable symbol is encoded with less bits than a less probable symbol. We are close to an optimal encoding of the symbols. \task Separate the message into symbols: \begin{equation*} \left(000001101110\right)_2 = \left[\left(000\right)_2, \left(001\right)_2, \left(101\right)_2, \left(110\right)_2\right] \end{equation*} Encode the symbols using the table: \begin{equation*} \left[\left(00\right)_2, \left(01\right)_2, \left(1100\right)_2, \left(111\right)_2\right] = \left(00011100111\right)_2 \end{equation*} We have reduced the number of bits from 12 to 11. Even if this seems to be less. But this scales with the message length. For example, reducing a file size from \SI{12}{GiB} to \SI{11}{GiB} is quite a lot. \task Split the message $\left(011000101\right)_2$ into the codewords: \begin{equation*} \left(01100010100\right)_2 = \left[\left(01\right)_2, \left(1000\right)_2, \left(101\right)_2, \left(00\right)_2\right] \end{equation*} Do a reverse lookup in out encoding table: \begin{equation*} \left[\left(001\right)_2, \left(010\right)_2, \left(100\right)_2, \left(000\right)_2\right] = \left(001010100000\right)_2 \end{equation*} \end{tasks} \end{solution} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{question}[subtitle={Bit Errors}] We consider the transmission of binary symbols. The transmitter transmits symbols from the alphabet $X = \left\{0, 1\right\}$. The receiver decodes the received signal to the symbol alphabet $Y = \left\{0, 1\right\}$. If there is no noise ($\mathrm{SNR} = \infty$), there are no bit errors. The joint probability matrix for the received symbols is: \begin{equation*} \mat{P}_{Y/X,\SI{0}{\percent}} = \left[\begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix}\right] \end{equation*} Under a noisy transmission, there is a probability of bit errors. The bit error rate (BER) is $\SI{10}{\percent}$. The joint probability matrix for the received symbols is: \begin{equation*} \mat{P}_{Y/X,\SI{10}{\percent}} = \left[\begin{matrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{matrix}\right] \end{equation*} \begin{tasks} \task The symbols sequence $\left[1, 0, 1, 0\right]$ is transmitted through the \textbf{noise-free} channel. How will the received symbol sequence look like? \task The receiver receives the symbol sequence $\left[1, 0, 1, 0, 1, 1, 1, 0, 0, 1\right]$ from the \textbf{noisy} channel. In average, how many bits of this sequence are correct? What countermeasures can be taken? \end{tasks} \end{question} \begin{solution} \begin{tasks} \task There are no bit errors. So the receiver will always decode $\left[1, 0, 1, 0\right]$. Note that, this will never be observed in reality where noise is always present. This is just a theoretical consideration. \task We have a bit error rate of $\SI{10}{\percent}$, meaning every tenth received bit is wrong. For the received sequence of 10 symbols, only \textbf{9 symbols} are correct in average. However, we cannot definitively say which bits are correct and which are wrong. We can only determine the probabilities. So we need error detection and error correction methods (channel coding). Every transmission channel is noisy. So there will always be a non-zero probability of observing bit errors. Generally, the better the signal to noise ratio (SNR), the lower the bit error rate (BER). \end{tasks} \end{solution} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{question}[subtitle={Hamming Distance}] Determine the Hamming distance of the following codeword pairs! \begin{tasks} \task $\vec{v}_1 = \left[1, 0, 1\right]$ and $\vec{v}_2 = \left[1, 1, 1\right]$ \task $\vec{v}_1 = \left[1, 1\right]$ and $\vec{v}_2 = \left[1, 1\right]$ \task $\vec{v}_1 = \left[1, 0, 0, 0, 0\right]$ and $\vec{v}_2 = \left[0, 1, 1, 0, 0\right]$ \task $\vec{v}_1 = \left[1, 0\right]$ and $\vec{v}_2 = \left[0, 0, 0, 1\right]$ \end{tasks} \end{question} \begin{solution} \begin{tasks} \task $\mathrm{d}\left(\vec{v}_1, \vec{v}_2\right) = 1$ \task $\mathrm{d}\left(\vec{v}_1, \vec{v}_2\right) = 0$ The codewords are equal. \task $\mathrm{d}\left(\vec{v}_1, \vec{v}_2\right) = 3$ \task No Hamming distance. The codewords are of different length and not comparable. \end{tasks} \end{solution} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{question}[subtitle={Channel Coding}] A linear block code with the generator matrix $\mat{G}$ is given. \begin{equation*} \mat{G} = \left[\begin{matrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{matrix}\right] \end{equation*} \begin{tasks} \task How many bits are in one information block? \textit{(Hint: Information, not codeword length)} \task How many bit errors can be detected and how many can be corrected in one message block? \task Encode the message $\vec{m} = \left[1, 0, 0, 1\right]$! \task Is the code systematic? Explain briefly the characteristic of systematic codes! \task Construct the parity check matrix! \task Is the word $\vec{x} = \left[1, 0, 1, 0, 1, 0, 1\right]$ a valid codeword? What is the message $\vec{m}$? \end{tasks} \end{question} \begin{solution} \begin{tasks} \task It is a $(7,4)$ code. One information block has $k = 4$ bits. \task \begin{itemize} \item It is a $(7,4)$ code. $n = 7$, $k = 4$. \item Minimum hamming distance is $d_{min} = n - k + 1 = 4$ \item Detectable errors: $d_{min} - 1 = 3$ \item Correctable errors: $\frac{d_{min}}{2} - 1 = 1$ \end{itemize} \task \begin{equation*} \vec{x} = \left[1, 0, 0, 1\right] \cdot \left[\begin{matrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{matrix}\right] = \left[1, 0, 0, 1, 1, 0, 0\right] \end{equation*} \task \begin{itemize} \item Systematic codes resemble the original message unchanged. Only parity bits are added. \item So a receiver can read the data without the need for decoding, provided that no bit errors are present. \item This code is systematic. \end{itemize} \task The parity matrix is \begin{equation*} \mat{P} = \left[\begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{matrix}\right] \end{equation*} Its transpose is \begin{equation*} \mat{P}^{\mathrm{T}} = \left[\begin{matrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{matrix}\right] \end{equation*} The identity matrix is \begin{equation*} \mat{I} = \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix}\right] \end{equation*} The identity matrix is now $3 \times 3$. Otherwise, it cannot be concatenated to the transposed parity matrix. The parity check matrix is \begin{equation*} \mat{H} = \left[-\mat{P}^{\mathrm{T}}, \mat{\mathrm{I}}\right] = \left[\begin{matrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{matrix}\right] \end{equation*} Every operation is modulo 2. That is, $(1) \mod 2 \equiv (-1) \mod 2$. So $-1$ (from the negation $-\mat{P}^{\mathrm{T}}$) is equivalent to $1$. \task Calculate the syndrome vector: \begin{equation*} \vec{s} = \mat{H} \cdot \vec{x} = \left[\begin{matrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{matrix}\right] \left[1, 0, 1, 0, 1, 0, 1\right]^{\mathrm{T}} = \left[0, 0, 0\right] = \mat{\mathrm{0}} \end{equation*} The codeword is valid because the syndrome vector is zero. The message can directly be read from the codeword because: \begin{itemize} \item The codeword is valid. No error correction is required. \item The code is systematic. The message is encoded in the first four bits. \end{itemize} The message is $\vec{s} = \left[1, 0, 1, 0\right]$. \end{tasks} \end{solution} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\begin{question}[subtitle={DS-CDMA}] %\begin{tasks} % \task % %\end{tasks} %\end{question} % %\begin{solution} %\begin{tasks} % \task % %\end{tasks} %\end{solution}