diff options
| author | Philipp Le <philipp-le-prviat@freenet.de> | 2020-06-23 01:13:17 +0200 |
|---|---|---|
| committer | Philipp Le <philipp-le-prviat@freenet.de> | 2021-03-04 22:44:39 +0100 |
| commit | 22e223b8545147c8a7378a41d4bd614378b2d105 (patch) | |
| tree | 4212a861ad787740d9097d5c50574faf3f35b34d | |
| parent | 0e9e437453375c61027b4989f937a9efbde9c3b4 (diff) | |
| download | dcs-lecture-notes-22e223b8545147c8a7378a41d4bd614378b2d105.zip dcs-lecture-notes-22e223b8545147c8a7378a41d4bd614378b2d105.tar.gz dcs-lecture-notes-22e223b8545147c8a7378a41d4bd614378b2d105.tar.bz2 | |
WIP: Chapter 7 - Multiple Access
| -rw-r--r-- | chapter07/content_ch07.tex | 193 | ||||
| -rw-r--r-- | common/acronym.tex | 1 |
2 files changed, 190 insertions, 4 deletions
diff --git a/chapter07/content_ch07.tex b/chapter07/content_ch07.tex index 9cdc9d3..dcede28 100644 --- a/chapter07/content_ch07.tex +++ b/chapter07/content_ch07.tex @@ -956,9 +956,9 @@ Let's consider three situations based on the IEEE 802.11b examples (Figure \ref{ } \draw[green,thick] (0,0) \foreach \v in {-1,-1,-1,+1,-1,-1,-1,-1,-1,+1,-1}{ -- ++(0.5,{\v/11})}; - \draw[fill=gray!50,draw] (5.5,{-9/11}) ++(0:0.1) arc(0:360:0.1); + \draw[fill=gray!50,draw] (5.5,{-7/11}) ++(0:0.1) arc(0:360:0.1); \draw[green,thick] (5.5,0) \foreach \v in {+1,+1,+1,+1,-1,+1,-1,+1,+1,+1,+1}{ -- ++(0.5,{\v/11})}; - \draw[fill=gray!50,draw] (11,{+9/11}) ++(0:0.1) arc(0:360:0.1); + \draw[fill=gray!50,draw] (11,{+7/11}) ++(0:0.1) arc(0:360:0.1); \foreach \y in {-0.5,0.5}{ \draw[orange] (0,\y) -- (11,\y) node[anchor=south east,align=right]{Data detection threshold}; @@ -1411,22 +1411,207 @@ In the receiver, the signal processing chain is reversed: \section{Multiple Access} -\todo{Multiplexing} +In the previous sections, only two terminals were involved in the communication -- the transmitter and the receiver. \index{multiple access} \textbf{Multiple access} methods allow more than two terminals to transmit on the same transmission medium. The resources are shared. +\begin{itemize} + \item The resource which must be shared is a frequency band. + \begin{itemize} + \item Frequency bands are allocated to the services by the national regulation authority. + \item Each service has a limited bandwidth available. + \item All users of the service must share the bandwidth. + \end{itemize} + \item Multiple access methods set the rules and techniques for this resource sharing. + \item Multiple access methods are mostly based on \emph{spread spectrum} technologies. + \begin{itemize} + \item The symbol energy is spread across the frequency. + \item Each user uses a different \emph{spreading code} to access the medium. + \item By \emph{despreading}, the signals of the different users can be reconstructed. + \end{itemize} +\end{itemize} -\todo{Sharing Resources} +Multiple access involves \index{multiplexing} \textbf{multiplexing}. Multiplexing distributes the signal along certain dimensions of a resource, so that the resource (transmission medium) can transport independent information parallelly. There are four dimensions which can be multiplexed: +\begin{itemize} + \item Space + \item Time + \item Frequency + \item Code +\end{itemize} + +\todo{Multiplexing scheme} + +Multiple access methods are implemented in both the \emph{physical layer} (\acs{OSI} layer 1) and the \emph{data link layer} (\acs{OSI} layer 2). +\begin{itemize} + \item The \index{medium access control} \textbf{\acf{MAC}} is a part of the \emph{data link layer} (\acs{OSI} layer 2). It contains the high-level logic which implements multiple access methods. It is responsible for the allocation of resources (scheduling). For example, it assigns \emph{spreading codes}, time-slots or sub-carriers to different users. The \ac{MAC} must provide reliable medium access. Data collisions of different users must be mitigated. + \item The \emph{physical layer} (\acs{OSI} layer 1) changes the modulation and spreading parameters according to the instructions issued by the \emph{data link layer} (\acs{OSI} layer 2). +\end{itemize} + +Reasons for multiple access: +\begin{itemize} + \item \textbf{Number of users} -- A service is provided to lots of users. + \item \textbf{Efficiency} -- Users occupy the medium for only a short time. Between the transmission bursts, other users can use the free medium. + \item \textbf{Latency} -- Low latency can only be achieved if users can access the medium simultaneously. +\end{itemize} \subsection{Space-Division Multiple Access} +A simple and \emph{non-spreading} method is \index{space-division multiple access} \textbf{\acf{SDMA}}. +\begin{itemize} + \item Users are separated spatially. + \item For wireless channels: The signals only have a limited range and cannot be received outside that range. + \item For wired channels: The users are connected to different cables. + \item The users are put into different spatial segments. + \item All users can use the medium parallelly without interfering with each other. +\end{itemize} + +\todo{SDMA figure} + \subsection{Time-Division Multiple Access} +A multiple access method derived from \ac{THSS} is \index{time-division multiple access} \textbf{\acf{TDMA}}. +\begin{itemize} + \item Each user obtains one of the $M$ time-slot for exclusive usage. + \item The \emph{spreading code} $C[m]$ is constant for each user and yields the time-slot number. + \item \ac{ISI} is an issue. Guard intervals must be inserted. +\end{itemize} + +\begin{remark} + Optionally, users can obtain multiple time-slot allocations to increase their data rate. +\end{remark} + +\begin{figure}[H] + \centering + \begin{tikzpicture}[ + x={(0.5cm,0cm)}, + y={(0cm,0.5cm)}, + ] + \draw[-latex] (0,0) -- (11,0) node[below right,align=left]{Time $t$}; + \draw[-latex] (0,0) -- (0,11) node[above left,align=right]{Frequency $f$}; + + \foreach \n/\c in {0/red, 1/blue, 2/green, 3/yellow, 4/olive}{ + \draw[fill=\c!50,draw=black] ({(\n*2)},0) -- ({(\n*2)},10) -- ({(\n*2)+1.5},10) -- ({(\n*2)+1.5},0) -- cycle; + \node[align=center,rotate=90] at({(\n*2)+0.75},5) {User \n}; + } + \end{tikzpicture} + \caption[Time-slot allocation in a \acs{TDMA} system]{Time-slot allocation in a \acs{TDMA} system. In a \acs{TDMA} system, each user obtains a time-slot where it can exclusively use the whole bandwidth.} +\end{figure} + +Advantages: +\begin{itemize} + \item Only one carrier frequency $\leftarrow$ only one oscillator required for reception $\leftarrow$ simple receiver design +\end{itemize} + +Drawbacks: +\begin{itemize} + \item Time synchronization required + \item Guard interval required +\end{itemize} + \subsection{Frequency-Division Multiple Access} +A multiple access method derived from \ac{FHSS} is \index{frequency-division multiple access} \textbf{\acf{FDMA}}. +\begin{itemize} + \item Each user obtains one of the $M$ sub-bands for exclusive usage. + \item The \emph{spreading code} $C[m]$ is constant for each user and yields the sub-bands number. + \item The frequency is not changed for a user. Thus, the frequency-hopping is replaced by a constant frequency. + \item \emph{Inter-carrier interference} is an issue. Guard bands must be inserted. +\end{itemize} + +\begin{remark} + Optionally, users can obtain multiple sub-band allocations to increase their data rate. +\end{remark} + +\begin{figure}[H] + \centering + \begin{tikzpicture}[ + x={(0.5cm,0cm)}, + y={(0cm,0.5cm)}, + ] + \draw[-latex] (0,0) -- (11,0) node[below right,align=left]{Time $t$}; + \draw[-latex] (0,0) -- (0,11) node[above left,align=right]{Frequency $f$}; + + \foreach \n/\c in {0/red, 1/blue, 2/green, 3/yellow, 4/olive}{ + \draw[fill=\c!50,draw=black] (0,{(\n*2)}) -- (10,{(\n*2)}) -- (10,{(\n*2)+1.5}) -- (0,{(\n*2)+1.5}) -- cycle; + \node[align=center] at(5,{(\n*2)+0.75}) {User \n}; + } + \end{tikzpicture} + \caption[Sub-band allocation in an \acs{FDMA} system]{Sub-band allocation in an \acs{FDMA} system. In an \acs{FDMA} system, each user obtains a sub-band which it can exclusively use at any time.} +\end{figure} + +Advantages: +\begin{itemize} + \item No time synchronization required +\end{itemize} + +Drawbacks: +\begin{itemize} + \item More complex receiver design (many parallel oscillators or enhanced digital signal processing) + \item Guard band required +\end{itemize} + \subsection{Code-Division Multiple Access} +A multiple access method derived from \ac{DSSS} is \index{code-division multiple access} \textbf{\acf{CDMA}}. +\begin{itemize} + \item \emph{Spreading codes} with a length of $L$ have $K$ combinations which are orthogonal. + \item Each user obtains one of the $K$ orthogonal codes for exclusive usage. + \item All users can transmit simultaneously using the whole bandwidth. + \item The receiver is able to split the simultaneously transmitted signals of the different users using the orthogonal codes. + \item Due to the code orthogonality, the users cannot interfere. +\end{itemize} + +\begin{remark} + Optionally, users can obtain multiple code allocations to increase their data rate. +\end{remark} + +\begin{figure}[H] + \centering + \begin{tikzpicture}[ + x={(-0.35cm,-0.35cm)}, + y={(0.5cm,0cm)}, + z={(0cm,0.5cm)}, + ] + \draw[-latex] (0,0,0) -- (11,0,0) node[below right,align=left]{Time $t$}; + \draw[-latex] (0,0,0) -- (0,11,0) node[below right,align=left]{Frequency $f$}; + \draw[-latex] (0,0,0) -- (0,0,11) node[right,align=left]{Code $c$}; + + \foreach \n/\c in {0/red, 1/blue, 2/green, 3/yellow, 4/olive}{ + \draw[fill=\c!50,draw=black] (10,0,{(\n*2)}) -- (10,10,{(\n*2)}) -- (10,10,{(\n*2)+1.5}) -- (10,0,{(\n*2)+1.5}) -- cycle; + \draw[fill=\c!50,draw=black] (10,10,{(\n*2)}) -- (0,10,{(\n*2)}) -- (0,10,{(\n*2)+1.5}) -- (10,10,{(\n*2)+1.5}) -- cycle; + \draw[fill=\c!50,draw=black] (0,0,{(\n*2)+1.5}) -- (10,0,{(\n*2)+1.5}) -- (10,10,{(\n*2)+1.5}) -- (0,10,{(\n*2)+1.5}) -- cycle; + \node[align=center] at(10,5,{(\n*2)+0.75}) {User \n}; + } + \end{tikzpicture} + \caption[Code allocation in a \acs{CDMA} system]{Code allocation in a \acs{CDMA} system. In a \acs{CDMA} system, each user obtains a spreading code which is orthogonal to all other user's codes. The whole bandwidth is used by all users simultaneously.} +\end{figure} + +Advantages: +\begin{itemize} + \item Only one carrier $\leftarrow$ one analogue \ac{LO} $\leftarrow$ simple receiver design (analogue part) + \item Bandwidth is used efficiently. + \item Good noise immunity. +\end{itemize} + +Drawbacks: +\begin{itemize} + \item High requirements on digital signal processing (parallel detection of different codes) + \item Transmitters must be able to adjust their transmission power. Transmitters which are closer to the receiver must reduce their power. Otherwise, the receiver would be over-driven due to the limited dynamic range. It then cannot receive far transmitters whose signals are relatively weak. +\end{itemize} + \subsection{Orthogonal Frequency-Division Multiple Access} +The \index{orthogonal frequency-division multiple access} \textbf{\acf{OFDMA}} is an extension of the \ac{FDMA} using \emph{orthogonal sub-carrier}. The \ac{OFDMA} method is implemented by a \ac{OFDM} system. +\begin{itemize} + \item The sub-band allocation equals that of \ac{FDMA}. + \item The carriers of the sub-bands are orthogonal. Guard bands are not required. The different users will not interfere. +\end{itemize} + +%\subsection{Hybrid Methods} + + + \section{Orthogonal Codes} +%\section{Duplexing} + \nocite{ipatov2005} \phantomsection diff --git a/common/acronym.tex b/common/acronym.tex index 560c9da..2e1c0e7 100644 --- a/common/acronym.tex +++ b/common/acronym.tex @@ -158,6 +158,7 @@ \acro{RTT}{round trip time} \acro{SAP}{service access point} \acro{SDM}{space-division multiplexing} + \acro{SDMA}{space-division multiple access} \acro{SDR}{software-defined radio} \acro{SECDED}{single error correct, double error detect} \acro{SEP}{spherical error probablilty} |
