summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPhilipp Le <philipp-le-prviat@freenet.de>2020-05-30 01:05:02 +0200
committerPhilipp Le <philipp-le-prviat@freenet.de>2021-03-04 01:31:57 +0100
commit4adcc6e2ce83cca88ef7dd78582d8b5bc5617d05 (patch)
treed494c1b9f9c53d597827cc1595cb8270062f2895
parentc273024c80fabc5cf85dc146fc88f9a848d94be5 (diff)
downloaddcs-lecture-notes-4adcc6e2ce83cca88ef7dd78582d8b5bc5617d05.zip
dcs-lecture-notes-4adcc6e2ce83cca88ef7dd78582d8b5bc5617d05.tar.gz
dcs-lecture-notes-4adcc6e2ce83cca88ef7dd78582d8b5bc5617d05.tar.bz2
Corrections to Chapter 2 and Exercise 2
-rw-r--r--chapter02/content_ch02.tex13
-rw-r--r--exercise02/exercise02.tex6
-rw-r--r--main/chapter02.tex4
-rw-r--r--main/exercise02.tex4
4 files changed, 16 insertions, 11 deletions
diff --git a/chapter02/content_ch02.tex b/chapter02/content_ch02.tex
index 8ae492c..d596c93 100644
--- a/chapter02/content_ch02.tex
+++ b/chapter02/content_ch02.tex
@@ -325,11 +325,11 @@ Now, you can prove that the cosine and sine functions are orthogonal to each oth
Furthermore, the sine and cosine functions with \underline{different} indices are orthogonal to each other.
\begin{equation}
- \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \cos\left(n \omega_0 t\right) \cos\left(p \omega_0 t\right) \, \mathrm{d} t = \frac{\pi}{\omega_0} \cdot \delta_{np} \qquad \forall \; n, p \in \mathbb{N}
+ \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \cos\left(n \omega_0 t\right) \cos\left(p \omega_0 t\right) \, \mathrm{d} t = \frac{\pi}{\omega_0} \cdot \delta_{np} \qquad \forall \; n, p \in \mathbb{N} \backslash \{0\}
\label{eq:ch02:orth_rel_cos}
\end{equation}
\begin{equation}
- \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \sin\left(m \omega_0 t\right) \sin\left(q \omega_0 t\right) \, \mathrm{d} t = \frac{\pi}{\omega_0} \cdot \delta_{mq} \qquad \forall \; m, q \in \mathbb{N}
+ \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \sin\left(m \omega_0 t\right) \sin\left(q \omega_0 t\right) \, \mathrm{d} t = \frac{\pi}{\omega_0} \cdot \delta_{mq} \qquad \forall \; m, q \in \mathbb{N} \backslash \{0\}
\label{eq:ch02:orth_rel_sin}
\end{equation}
with the Kronecker delta
@@ -362,10 +362,13 @@ The orthogonality relations are useful to extract the coefficients $a_n$ and $b_
Using the orthogonality relations, the coefficients $\tilde{a}_n$ and $\tilde{b}_n$ can be obtained by:
\begin{subequations}
\begin{align}
- \tilde{a}_n &= \frac{\omega_0}{\pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \tilde{x}_p(t) \cdot \cos\left(n \omega_0 t\right) \, \mathrm{d} t \label{eq_ch02_fourier_series_coeff_an} \\
- \tilde{b}_m &= \frac{\omega_0}{\pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \tilde{x}_p(t) \cdot \sin\left(m \omega_0 t\right) \, \mathrm{d} t \label{eq_ch02_fourier_series_coeff_bm}
+ \tilde{a}_n &= \frac{\omega_0}{\pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \tilde{x}_p(t) \cdot \cos\left(n \omega_0 t\right) \, \mathrm{d} t \label{eq_ch02_fourier_series_coeff_an} \qquad \forall \; n > 0 \\
+ \tilde{b}_m &= \frac{\omega_0}{\pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \tilde{x}_p(t) \cdot \sin\left(m \omega_0 t\right) \, \mathrm{d} t \label{eq_ch02_fourier_series_coeff_bm} \qquad \forall \; m > 0 \\
+ \tilde{a}_0 &= \frac{\omega_0}{2 \pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \tilde{x}_p(t) \, \mathrm{d} t \\
+ \tilde{b}_0 &= 0
\end{align}
\end{subequations}
+\textit{Remark: } $a_0$ and $b_0$ need a special treatment, because of slightly changed orthogonality relations.
\begin{proof}{Parameter Extraction for $\tilde{a}_n$}
Given is a periodic function $\tilde{x}_p(t)$, which can be decomposed into:
@@ -441,6 +444,8 @@ It is based on the orthogonality relation:
\label{eq:ch02:orth_rel_exp}
\end{equation}
+\vspace*{1em}
+
\begin{definition}{Complex-Valued Fourier series}
A complex-valued, periodic signal $\underline{x_p}(t)$ can be decomposed into a series complex-valued mono-chromatic signals \eqref{eq:ch02:fourier_series_cmplx} -- the \index{Fourier series!complex-valued} \textbf{complex-valued Fourier series}.
\begin{equation*}
diff --git a/exercise02/exercise02.tex b/exercise02/exercise02.tex
index 3c5e412..e561555 100644
--- a/exercise02/exercise02.tex
+++ b/exercise02/exercise02.tex
@@ -139,10 +139,10 @@
&= \frac{1}{\pi n} \left(
\SI{0.8}{V} \cdot \left(
\sin\left(\frac{\pi}{2}n\right)
- - \underbrace{\sin\left(-\frac{\pi}{2}n\right)}_{= \sin\left(\frac{\pi}{2}n\right)}
+ - \underbrace{\sin\left(-\frac{\pi}{2}n\right)}_{= -\sin\left(\frac{\pi}{2}n\right)}
\right)
- \SI{0.2}{V} \cdot \left(
- \underbrace{\sin\left(\frac{3\pi}{2}n\right)}_{= \sin\left(\frac{\pi}{2}n\right)}
+ \underbrace{\sin\left(\frac{3\pi}{2}n\right)}_{= -\sin\left(\frac{\pi}{2}n\right)}
- \sin\left(\frac{\pi}{2}n\right)
\right)
\right) \\
@@ -806,7 +806,7 @@
\end{equation*}
Using the time-shift theorem:
\begin{equation*}
- u_o(t) = \mathcal{F}^{-1}\left\{\underline{U}_i\left(j \omega\right)\right\} = \SI{1.19}{V} \cdot \cos\left(2 \pi \cdot \SI{2.5}{kHz} \cdot t - \SI{53.6}{\degree}\right)
+ u_o(t) = \mathcal{F}^{-1}\left\{\underline{U}_i\left(j \omega\right)\right\} = \SI{1.19}{V} \cdot \cos\left(2 \pi \cdot \SI{2.5}{kHz} \cdot t + \SI{53.6}{\degree}\right)
\end{equation*}
The signal has been attenuated and phase-shifted.
\end{tasks}
diff --git a/main/chapter02.tex b/main/chapter02.tex
index 91b8ed9..b2bb59f 100644
--- a/main/chapter02.tex
+++ b/main/chapter02.tex
@@ -13,8 +13,8 @@
% Configuration
\def\thekindofdocument{Lecture Notes}
\def\thesubtitle{Chapter 2: Time-Continuous Signals and Systems}
-\def\therevision{1}
-\def\therevisiondate{2020-05-11}
+\def\therevision{2}
+\def\therevisiondate{2020-05-29}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Header
diff --git a/main/exercise02.tex b/main/exercise02.tex
index d7bae02..f6f7963 100644
--- a/main/exercise02.tex
+++ b/main/exercise02.tex
@@ -13,8 +13,8 @@
% Configuration
\def\thekindofdocument{Exercise}
\def\thesubtitle{Chapter 2: Time-Continuous Signals and Systems}
-\def\therevision{1}
-\def\therevisiondate{2020-05-18}
+\def\therevision{2}
+\def\therevisiondate{2020-05-29}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Header