diff options
| author | Philipp Le <philipp-le-prviat@freenet.de> | 2020-05-31 00:29:48 +0200 |
|---|---|---|
| committer | Philipp Le <philipp-le-prviat@freenet.de> | 2021-03-04 01:31:57 +0100 |
| commit | 7eb99f98d3c858aba7974e66eddfbe94bd3e85d7 (patch) | |
| tree | 26304246c95a7b05d5d510d5d6ba558f37be6f6c | |
| parent | c69c70d6ba08ccd971153805e9ae7908e8bef9cc (diff) | |
| download | dcs-lecture-notes-7eb99f98d3c858aba7974e66eddfbe94bd3e85d7.zip dcs-lecture-notes-7eb99f98d3c858aba7974e66eddfbe94bd3e85d7.tar.gz dcs-lecture-notes-7eb99f98d3c858aba7974e66eddfbe94bd3e85d7.tar.bz2 | |
WIP: Chapter 5
| -rw-r--r-- | chapter05/content_ch05.tex | 201 | ||||
| -rw-r--r-- | common/acronym.tex | 13 |
2 files changed, 207 insertions, 7 deletions
diff --git a/chapter05/content_ch05.tex b/chapter05/content_ch05.tex index 474d59e..9d50e20 100644 --- a/chapter05/content_ch05.tex +++ b/chapter05/content_ch05.tex @@ -30,11 +30,14 @@ Example: Voice transmission In the previous example, the voice was the baseband signal. This can be transferred to any kind of information. In this chapter, we will discuss techniques to modulate data on carriers which can be transmitted over wired and wireless channels. +\todo{Block diagram modulator} + \section{Modulation in The Time and Frequency Domain} Generally, the carrier is a \emph{monochromatic} signal, i.e., it is a sinusoidal function. A sinusoidal function has three parameters: (angular) frequency $\omega_C$, phase $\varphi_C$ and amplitude $\hat{X}_C$. \begin{equation} x_C(t) = \hat{X}_C \cos\left(\omega_C t + \varphi_C\right) + \label{eq:ch05:carrier_timedomain} \end{equation} The frequency is fixed to the carrier frequency. The other two parameters can be altered and the information can be modulated into them. @@ -42,7 +45,7 @@ There are two classes of modulation: \begin{itemize} \item \textbf{Amplitude modulation} The amplitude of the carrier is altered. \begin{equation} - x_{S,AM}(t) = f_{\hat{X}(t)} \cos\left(\omega_C t + \varphi_C\right) + x_{S,AM}(t) = f_{\hat{X}}(t) \cos\left(\omega_C t + \varphi_C\right) \end{equation} \item \textbf{Phase modulation} The phase of the carrier is altered. \begin{equation} @@ -52,19 +55,207 @@ There are two classes of modulation: \subsection{Amplitude Modulation} -\subsection{Phase Modulation} +\index{amplitude modulation} \textbf{\ac{AM}} is the alteration of the carrier's amplitude. + +\begin{attention} + By now, all signals are real, because the technical realization is considered. Physical signals must always be real. +\end{attention} + +The carrier is a mono-chromatic signal: +\begin{equation} + x_C(t) = \hat{X}_C \cdot \cos\left(2\pi f_C + \varphi_C\right) +\end{equation} +where +\begin{itemize} + \item $\hat{X}_C$ is the amplitude of the carrier, + \item $f_C$ is the carrier frequency ($2\pi f_C = \omega_C$ is carrier angular frequency), and + \item $\varphi_C$ is the phase offset of the carrier. +\end{itemize} + +The carrier amplitude can be altered by multiplying it with the instantaneous value of the baseband signal $x_B(t)$: +\begin{equation} + x_M(t) = x_B(t) \cdot \left(1 + \mu x_C(t)\right) + \label{eq:ch05:amdsb_timedomain} +\end{equation} +\begin{itemize} + \item The waveform of the carrier is retained. The carrier is still present in the modulated signal. This is represented by the $+1$ in the sum. + \item Its amplitude is changed by the instantaneous value of the baseband signal. The contribution of the baseband signal is defined by the factor $\mu$. +\end{itemize} + +\begin{figure}[H] + \centering + + \subfloat[Carier and signal signals]{ + \centering + \begin{tikzpicture} + \begin{axis}[ + height={0.15\textheight}, + width=0.6\linewidth, + scale only axis, + xlabel={$t$}, + ylabel={$x(t)$}, + %grid style={line width=.6pt, color=lightgray}, + %grid=both, + grid=none, + legend pos=outer north east, + axis y line=middle, + axis x line=middle, + every axis x label/.style={ + at={(ticklabel* cs:1.05)}, + anchor=north, + }, + every axis y label/.style={ + at={(ticklabel* cs:1.05)}, + anchor=east, + }, + xmin=-0.5, + xmax=8.5, + ymin=-1.2, + ymax=1.2, + %xtick={0,0.125,...,1}, + %xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$}, + %ytick={0}, + ] + \addplot[blue, smooth, domain=0:8, samples=200] plot(\x, {cos(deg(2*pi*2*\x))}); + \addlegendentry{Carrier $x_C(t)$}; + \addplot[red, smooth, domain=0:8, samples=50] plot(\x, {cos(deg(2*pi*0.25*\x))}); + \addlegendentry{Baseband $x_B(t)$}; + \end{axis} + \end{tikzpicture} + } + + \subfloat[\acs{DSB} \acs{AM} (with carrier)]{ + \centering + \begin{tikzpicture} + \begin{axis}[ + height={0.15\textheight}, + width=0.6\linewidth, + scale only axis, + xlabel={$t$}, + ylabel={$x_{DSB}(t)$}, + %grid style={line width=.6pt, color=lightgray}, + %grid=both, + grid=none, + legend pos=outer north east, + axis y line=middle, + axis x line=middle, + every axis x label/.style={ + at={(ticklabel* cs:1.05)}, + anchor=north, + }, + every axis y label/.style={ + at={(ticklabel* cs:1.05)}, + anchor=east, + }, + xmin=-0.5, + xmax=8.5, + ymin=-1.7, + ymax=1.7, + %xtick={0,0.125,...,1}, + %xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$}, + %ytick={0}, + ] + \addplot[red, smooth, domain=0:8, samples=150] plot(\x, {cos(deg(2*pi*2*\x)) * (1+0.5*cos(deg(2*pi*0.25*\x)))}); + \addlegendentry{\acs{DSB} Signal $x_{DSB}(t)$}; + \addplot[olive, dashed, smooth, domain=0:8, samples=150] plot(\x, {(1+0.5*cos(deg(2*pi*0.25*\x)))}); + \addlegendentry{Envelope of $x_B(t)$}; + \end{axis} + \end{tikzpicture} + } + + \subfloat[\acs{DSB-SC} \acs{AM} (carrier suppressed)]{ + \centering + \begin{tikzpicture} + \begin{axis}[ + height={0.15\textheight}, + width=0.6\linewidth, + scale only axis, + xlabel={$t$}, + ylabel={$x_{DSB-SC}(t)$}, + %grid style={line width=.6pt, color=lightgray}, + %grid=both, + grid=none, + legend pos=outer north east, + axis y line=middle, + axis x line=middle, + every axis x label/.style={ + at={(ticklabel* cs:1.05)}, + anchor=north, + }, + every axis y label/.style={ + at={(ticklabel* cs:1.05)}, + anchor=east, + }, + xmin=-0.5, + xmax=8.5, + ymin=-1.2, + ymax=1.2, + %xtick={0,0.125,...,1}, + %xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$}, + %ytick={0}, + ] + \addplot[red, smooth, domain=0:8, samples=150] plot(\x, {cos(deg(2*pi*2*\x)) * (cos(deg(2*pi*0.25*\x)))}); + \addlegendentry{\acs{DSB-SC} Signal $x_{DSB-SC}(t)$}; + \addplot[olive, dashed, smooth, domain=0:8, samples=150] plot(\x, {(cos(deg(2*pi*0.25*\x)))}); + \addlegendentry{Envelope of $x_B(t)$}; + \end{axis} + \end{tikzpicture} + } + + \caption{\acs{DSB} \acs{AM} of analogue signals} +\end{figure} + +\subsubsection{Frequency Domain of AM Signals} + +Assumptions for the baseband signal: +\begin{itemize} + \item The baseband signal is band-limited to $-f_B \geq f \geq f_B$ ($\underline{X}_B\left(j\omega\right) = 0 \quad \forall \; |f| > f_B$). + \item The baseband signal is real-valued. Its spectrum is therefore symmetric ($\underline{X}_B\left(j\omega\right) = \overline{\underline{X}_B\left(-j\omega\right)}$). +\end{itemize} + +The carrier is monochromatic \eqref{eq:ch05:carrier_timedomain}. Its \ac{CTFT} is: +\begin{equation} + \underline{X}_C\left(j\omega\right) = \hat{X}_C \pi \left( \delta\left(\omega + 2 \pi f_C \right) + \delta\left(\omega - 2 \pi f_C \right) \right) +\end{equation} + +The time-domain expression \eqref{eq:ch05:amdsb_timedomain} of the \ac{AM} is in the frequency domain: +\begin{equation} + \underline{X}_M\left(j\omega\right) = \underline{X}_C\left(j\omega\right) + \mu \underline{X}_C\left(j\omega\right) * \underline{X}_B\left(j\omega\right) +\end{equation} +The multiplication becomes a convolution. +\begin{equation} + \underline{X}_M\left(j\omega\right) = \hat{X}_C \pi \left( \underbrace{\delta\left(\omega + 2 \pi f_C \right) + \mu \underline{X}_B\left(j\left(\omega + 2 \pi f_C\right)\right)}_{\text{Carrier plus modulated baseband (-)}} + \underbrace{\delta\left(\omega - 2 \pi f_C \right) + \mu \underline{X}_B\left(j\left(\omega - 2 \pi f_C\right)\right)}_{\text{Carrier plus modulated baseband (+)}} \right) +\end{equation} + +\textbf{The \ac{AM} is a frequency shift of the baseband in both the positive and the negative direction.} -\subsection{Technical Realization} +Due to the symmetry of the baseband, there is an \emph{upper sideband} and a \emph{lower sideband}, carrying the identical information, around the carrier. + +\todo{frequency domain plot} + +\todo{carrier suppression} + +\todo{single-sideband} + +\subsection{Sideband suppression} + +%\subsection{Phase Modulation} + +\subsection{Modulation vs. Mixing} + +\subsection{Technical Realization of Mixers} \todo{Non-linear component} \todo{IP3} +\subsection{Coherent and Non-Coherent Demodulation} + \section{Digital Modulation Techniques} -\subsection{Phase Shift Keying} +\subsection{Amplitude-Shift Keying} -\subsection{Coherent and Non-Coherent Demodulation} +\subsection{Phase-Shift Keying} \subsection{Constellation Diagrams} diff --git a/common/acronym.tex b/common/acronym.tex index 4074f81..e05b5b9 100644 --- a/common/acronym.tex +++ b/common/acronym.tex @@ -17,12 +17,13 @@ \acro{AM}{amplitude modulation} \acro{AOA}{angle of arrival} \acro{AWGN}{additive white Gaussian noise} + \acro{ASK}{amplitude-shift keying} \acro{B2B}{business-to-business} \acro{BER}{bit error rate} \acro{BIBO}{bounded-input, bounded-output} \acro{BPF}{band pass filter} \acro{BPM}{burst-position modulation} - \acro{BPSK}{binary phase shift keying} + \acro{BPSK}{binary phase-shift keying} \acro{BS}{base station} \acro{BSF}{band stop filter} \acro{CDF}{cummulative distribution function} @@ -41,6 +42,9 @@ \acro{DFT}{discrete Fourier transform} \acro{DME}{Distance Measuring Equipment} \acro{DOP}{dilution of precision} + \acro{DPSK}{differential phase-shift keying} + \acro{DSB}{double-sideband} + \acro{DSB-SC}{double-sideband suppressed carrier} \acro{DSSS}{direct sequence spread specturm} \acro{DS-CDMA}{direct sequence code-division multiple access} \acro{DTFT}{discrete-time Fourier transform} @@ -113,14 +117,17 @@ \acro{PHR}{physical layer header} \acro{PHY}{physical layer} \acro{PLL}{phase-locked loop} + \acro{PM}{phase modulation} \acro{PPM}{pulse-position modulation} \acro{PRF}{pulse repetition frequency} \acro{PSD}{power spectral density} \acro{PPDU}{physical layer protocol data unit} \acro{PSDU}{physical layer service data unit} - \acro{PSK}{phase shift keying} + \acro{PSK}{phase-shift keying} + \acro{QAM}{quadrature amplitude modulation} \acro{QED}{quod erat demonstrandum} \acro{QOS}{quality of service} + \acro{QPSK}{quadrature phase-shift keying} \acro{RAM}{random access memory} \acro{ROM}{read-only memory} \acro{RS}{recommended standard} @@ -142,6 +149,8 @@ \acro{SNR}{signal-to-noise ratio} \acro{SQNR}{signal-to-qunatization-noise ratio} \acro{SPI}{serial peripheral interface} + \acro{SSB}{single-sideband} + \acro{SSB-SC}{single-sideband suppressed carrier} \acro{TCXO}{temperature-compensated crystal oscillator} \acro{TCP}{Transmission Control Protocol} \acro{TOA}{time of arrival} |
