summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPhilipp Le <philipp-le-prviat@freenet.de>2020-06-07 23:55:33 +0200
committerPhilipp Le <philipp-le-prviat@freenet.de>2021-03-04 22:44:39 +0100
commitafed1ed6b62aa9e0c347e608d57d3ae9118e80ca (patch)
tree861ef72430545c30c9346eef1dfaaaeeb82b04fd
parent19df42209c535cabed352432d8c2965d28935643 (diff)
downloaddcs-lecture-notes-afed1ed6b62aa9e0c347e608d57d3ae9118e80ca.zip
dcs-lecture-notes-afed1ed6b62aa9e0c347e608d57d3ae9118e80ca.tar.gz
dcs-lecture-notes-afed1ed6b62aa9e0c347e608d57d3ae9118e80ca.tar.bz2
Added tasks for Exercise 5
-rw-r--r--chapter06/content_ch06.tex45
-rw-r--r--exercise05/exercise05.tex131
-rw-r--r--exercise06/exercise06.tex14
3 files changed, 184 insertions, 6 deletions
diff --git a/chapter06/content_ch06.tex b/chapter06/content_ch06.tex
index 23ad171..e50260c 100644
--- a/chapter06/content_ch06.tex
+++ b/chapter06/content_ch06.tex
@@ -186,8 +186,8 @@ However, the filter is implemented in the time-domain.
\caption{Block diagram of an example \acs{IIR} filter}
\label{fig:ch06:iir_filt}
\end{figure}%
-\nomenclature[Bm]{\begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[twoport,t=$z^{-1}$,>] (2,0);\end{circuitikz}}{Delay element}%
-\nomenclature[Bm]{\begin{circuitikz}[baseline={(current bounding box.center)}]\node[adder](){};\end{circuitikz}}{Adder}
+\nomenclature[Bd]{\begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[twoport,t=$z^{-1}$,>] (2,0);\end{circuitikz}}{Delay element}%
+\nomenclature[Ba]{\begin{circuitikz}[baseline={(current bounding box.center)}]\node[adder](){};\end{circuitikz}}{Adder}
Figure \ref{fig:ch06:iir_filt} shows an example filter. The block diagram has following digital components:
\begin{itemize}
@@ -251,7 +251,7 @@ A stable filter has always a value-limited impulse response (\ac{BIBO} stable).
\end{equation}
\item The conditions for \ac{BIBO} stability is that all poles are located \underline{within the unit circle}.
\begin{equation}
- \left|\underline{z}_{\infty,l}\right| < 1 \qquad \forall \; 0 \leq l \leq Q
+ \left|\underline{z}_{\infty,l}\right| < 1 \qquad \forall \; 0 \leq l \leq P
\end{equation}
\end{itemize}
@@ -270,7 +270,7 @@ A digital filter without the feed-back path will not have any problems with stab
\underline{H}(\underline{z}) = \sum\limits_{i=0}^{P} \underline{b}_i \underline{z}^{-i}
\end{equation}
\item The number of feed-back filter taps is $Q = 0$.
- \item The filter does not have any poles. \textbf{The filter will always be \ac{BIBO} stable.}
+ \item All poles of the filter are $\underline{z}_{\infty,l} = 0 \quad \forall \; 0 \leq l \leq P$. \textbf{The filter will always be \ac{BIBO} stable.}
\end{itemize}
\begin{figure}[H]
@@ -324,6 +324,8 @@ There is another simple explanation for the \ac{BIBO} stability.
Digital filters without a feed-back branch will always have a finite-length impulse response. They are called \index{finite impulse response filter} \textbf{\acf{FIR} filters}. \ac{FIR} filters are always \ac{BIBO} stable.
\end{definition}
+As a drawback, \ac{FIR} filters require higher orders than an equivalent \ac{IIR} filter. This increases the complexity of its implementation.
+
\begin{example}{Gliding average filter}
The formula of the average of a series of $N$ values is:
\begin{equation}
@@ -360,8 +362,41 @@ There is another simple explanation for the \ac{BIBO} stability.
Both \ac{IIR} and \ac{FIR} are causal. Their impulse response is $\underline{h}[n] = 0 \quad \forall \; n < 0$.
+\section{Digital Mixer}
+
\section{Resampling}
+\begin{figure}[H]
+ \centering
+ \begin{tikzpicture}
+ \node[block,draw,align=center](High){High sampling rate};
+ \node[block,draw,align=center,right=3cm of High](Low){Low sampling rate};
+
+ \draw[-latex] ([xshift=5mm] High.north east) -- node[midway,above,align=center]{Down-sampling\\ (Decimation)} ([xshift=-5mm] Low.north west);
+ \draw[-latex] ([xshift=-5mm] Low.south west) -- node[midway,below,align=center]{Up-sampling\\ (Interpolation)} ([xshift=5mm] High.south east);
+ \end{tikzpicture}
+ \caption{Relation between down-sampling (decimation) and up-sampling (interpolation).}
+\end{figure}
+
+\begin{figure}[H]
+ \centering
+ \begin{circuitikz}
+ \node[block,draw,minimum height=3cm](Data){Data\\ Processing};
+
+ \draw ([shift={(-4cm,1cm)}] Data.west) node[left,align=right]{Input} to[adc,>,o-] ++(2cm,0) to[twoport,t=$\downarrow N$,>] ([yshift=1cm] Data.west) node[inputarrow]{};
+ \draw ([yshift=-1cm] Data.west) to[twoport,t=$\uparrow M$,>] ++(-2cm,0) to[dac,>] ++(-2cm,0) node[inputarrow,rotate=180]{} node[left,align=right]{Output};
+ \end{circuitikz}
+ \caption{A system with a down-sampler (decimation factor $N$) and up-sampler (interpolation factor $M$)}
+\end{figure}%
+\nomenclature[Bd]{\begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[twoport,t=$\downarrow N$,>] (2,0);\end{circuitikz}}{Down-sampler (decimation factor $N$)}%
+\nomenclature[Bu]{\begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[twoport,t=$\uparrow M$,>] (2,0);\end{circuitikz}}{Up-sampler (interpolation factor $M$)}%
+
+\textbf{Why resampling?}
+\begin{itemize}
+ \item Signals at lower sampling rates require less computation time and memory (software), or lower hardware complexity (less logic gates). The power consumption is reduced.
+ \item The \ac{ADC} can be operated at maximum sampling rate. The signal is oversampled. Down-sampling provides processing gain and enhances the receiver performance.
+\end{itemize}
+
\todo{Downsampling, Decimation}
\todo{Upsampling, Interpolation}
@@ -370,8 +405,6 @@ Both \ac{IIR} and \ac{FIR} are causal. Their impulse response is $\underline{h}[
\todo{CIC filter}
-\section{Digital Mixer}
-
\section{Fast Fourier Transform}
\todo{FFT}
diff --git a/exercise05/exercise05.tex b/exercise05/exercise05.tex
index 0591f3c..0c1ae31 100644
--- a/exercise05/exercise05.tex
+++ b/exercise05/exercise05.tex
@@ -12,6 +12,137 @@
\addcontentsline{toc}{section}{Exercise 5}
\section*{Exercise 5}
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\begin{question}[subtitle={Mixers}]
+ \begin{tasks}
+ \task
+ Is the mixer a linear device like filters and amplifiers?
+ \task
+ What is the difference between unbalanced and balanced mixers?
+ \task
+ Why do mixers need a non-linear component?
+ \end{tasks}
+\end{question}
+
+\begin{solution}
+ \begin{tasks}
+ \end{tasks}
+\end{solution}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\begin{question}[subtitle={Mirror frequencies}]
+ This is simplified block diagram of a receiver.
+ \begin{figure}[H]
+ \centering
+ \begin{adjustbox}{scale=0.8}
+ \begin{circuitikz}
+ \node[mixer](Mixer){};
+ \node[oscillator, below=1cm of Mixer](LO){};
+ \node[adcshape, right=2cm of Mixer](ADC){};
+ \node[block, draw, right=1cm of ADC](Baseband){Digital signal\\ processing};
+
+ \draw (LO.south) node[below,align=center,yshift=-5mm]{LO};
+ \draw (Mixer.north) node[above,align=center,yshift=3mm]{Mixer};
+
+ \draw (Mixer.west) -- ++(-1cm,0) node[rxantenna,xscale=-1]{};
+
+ \draw[-latex] (LO.north) -- (Mixer.south);
+ \draw[-latex] (Mixer.east) to[lowpass] (ADC.west);
+ \draw[-latex] (ADC.east) -- (Baseband.west);
+ \end{circuitikz}
+ \end{adjustbox}
+ \end{figure}
+ A signal of \SI{868}{MHz} should be received. The baseband is not zero-IF. The signal shall be mixed to \SI{1}{MHz} centre frequency.
+
+ \begin{tasks}
+ \task
+ How much is the minimum ADC sampling rate?
+ \task
+ To which frequencies can the LO be tuned to?
+ \task
+ The \SI{868}{MHz}-band is shared with lots of other users. Which important piece is missing in the receiver signal chain?
+ \task
+ An IQ demodulator is used instead of the single mixer. Sketch the spectrum of the complex-valued baseband signal for both possible LO frequencies!
+ \end{tasks}
+\end{question}
+
+\begin{solution}
+ \begin{tasks}
+ \end{tasks}
+\end{solution}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\begin{question}[subtitle={Constellation diagrams}]
+ Draw a constellation diagram of:
+ \begin{tasks}
+ \task
+ ASK (with 2 steps)
+ \task
+ BPSK
+ \task
+ QPSK
+ \task
+ 16-QAM
+ \end{tasks}
+\end{question}
+
+\begin{solution}
+ \begin{tasks}
+ \end{tasks}
+\end{solution}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\begin{question}[subtitle={Constellation diagrams}]
+ A QPSK modulator has the following mapping and symbol constellation:
+ \begin{table}[H]
+ \centering
+ \begin{tabular}{|l|l|l|}
+ \hline
+ Data & Symbol & Phasor \\
+ \hline
+ \hline
+ $(00)_2$ & 0 & $\SI{2}{mV} \cdot e^{j 0}$ \\
+ \hline
+ $(01)_2$ & 1 & $\SI{2}{mV} \cdot e^{j \frac{\pi}{2}}$ \\
+ \hline
+ $(10)_2$ & 2 & $\SI{2}{mV} \cdot e^{j \pi}$ \\
+ \hline
+ $(11)_2$ & 3 & $\SI{2}{mV} \cdot e^{j \frac{3 \pi}{2}}$ \\
+ \hline
+ \end{tabular}
+ \end{table}
+ The carrier is:
+ \begin{equation}
+ x_C(t) = \SI{2}{mV} \cdot \cos\left(2\pi \cdot \SI{50}{MHz} \cdot t\right)
+ \end{equation}
+ The symbol rate is $\SI{25}{MHz}$. After the DAC, an ideal low-pass filter with $\SI{25}{MHz}$ cut-off frequency is applied.
+
+ \begin{tasks}
+ \task
+ How much is the transmission bandwidth?
+ \task
+ How many bits can be encoded per QPSK symbol? How many symbols are required to encode one byte (8 bits)?
+ \task
+ Draw the constellation diagram!
+ \task
+ The data byte $(2E)_{16}$ shall be transmitted. Give the sequence of phasors representing the data byte!
+ \task
+ Describe the problem with inter-symbol interference!
+ \task
+ Plot the I and Q baseband signals! Plot the RF signal after IQ modulation!
+ \task
+ The following phasors are received at the receiver:
+ \begin{equation}
+ [\SI{1.5}{mV} e^{j \SI{120}{\degree}}, \SI{1.5}{mV} e^{j \SI{300}{\degree}}, \SI{1.5}{mV} e^{j \SI{30}{\degree}}, \SI{1.5}{mV} e^{j \SI{210}{\degree}}]
+ \end{equation}
+ What would the decoded data be? What is the matter?
+ \end{tasks}
+\end{question}
+
+\begin{solution}
+ \begin{tasks}
+ \end{tasks}
+\end{solution}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{question}[subtitle={Decibel}]
diff --git a/exercise06/exercise06.tex b/exercise06/exercise06.tex
index 169b3f6..954357e 100644
--- a/exercise06/exercise06.tex
+++ b/exercise06/exercise06.tex
@@ -14,6 +14,20 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\begin{question}[subtitle={Decibel}]
+ Proof mathematically that all poles of the FIR filter are $0$!
+
+ \begin{tasks}
+ \end{tasks}
+\end{question}
+
+\begin{solution}
+ \begin{tasks}
+ \end{tasks}
+\end{solution}
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{question}[subtitle={Decibel}]
% \begin{tasks}
% \end{tasks}