summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPhilipp Le <philipp-le-prviat@freenet.de>2021-05-20 22:23:57 +0200
committerPhilipp Le <philipp-le-prviat@freenet.de>2021-05-20 22:23:57 +0200
commitbe0a57a6703624e4823cf94381418041746c637f (patch)
treeb27b03a6795df3e7ead250eb1a6baa0aad55b17a
parent19eceedd4943c1b8e3bb079d10983d3fc0c14250 (diff)
downloaddcs-lecture-notes-be0a57a6703624e4823cf94381418041746c637f.zip
dcs-lecture-notes-be0a57a6703624e4823cf94381418041746c637f.tar.gz
dcs-lecture-notes-be0a57a6703624e4823cf94381418041746c637f.tar.bz2
Typo fixes
-rw-r--r--chapter05/content_ch05.tex6
-rw-r--r--chapter06/content_ch06.tex4
-rw-r--r--chapter07/content_ch07.tex2
3 files changed, 6 insertions, 6 deletions
diff --git a/chapter05/content_ch05.tex b/chapter05/content_ch05.tex
index 033246e..8c109f7 100644
--- a/chapter05/content_ch05.tex
+++ b/chapter05/content_ch05.tex
@@ -742,7 +742,7 @@ For simplicity, let's consider the positive part of the spectrum only.
\end{equation}
\begin{definition}{Transmission bandwidth}
- The \index{transmission bandwidth!narrowband phase modulation} \emph{transmission bandwidth of a narrowband \ac{PM}} is approximately the bandwidth of the information signal.
+ The \index{transmission bandwidth!narrowband phase modulation} \emph{transmission bandwidth of a narrowband \ac{PM}} is approximately the double of the bandwidth of the information signal.
\end{definition}
%\subsubsection{Narrowband Tone Modulation}
@@ -1501,7 +1501,7 @@ The coherent mixer is capable of receiving all variations of the \ac{RF} signal
\vspace{0.5em}
- \textbf{But if the diode is a mixer, where is the \ac{LO}?} Not every \ac{AM} is suitable for non-coherent demodulation. Only those transmitting the carrier like the \ac{DSB-TC} may be used. The \ac{RF} signal consists of the modulated sidebands containing the information and the carrier. At the non-linear component, the carrier mixes with the sidebands. The sideband are moved to zero-\ac{IF}.
+ \textbf{But if the diode is a mixer, where is the \ac{LO}?} Not every \ac{AM} is suitable for non-coherent demodulation. Only those transmitting the carrier like the \ac{DSB-TC} may be used. The \ac{RF} signal consists of the modulated sidebands containing the information and the carrier. At the non-linear component, the carrier mixes with the sidebands. The sideband are moved to zero-\ac{IF}. The transmitted carrier replaces the local oscillator signal and its phase is aligned with the information signal.
\vspace{0.5em}
@@ -2139,7 +2139,7 @@ Remember that the received signal is subject to noise (thermal noise, quantizati
\begin{figure}[H]
\centering
\begin{tikzpicture}
- \node[block,draw](Det){Symbol mapping};
+ \node[block,draw](Det){Data detection};
\node[block,draw,right=2cm of Det](Demod){Demodulation};
\draw[-latex] (Det.west) -- +(-2cm,0) node[left,align=right]{Reconstructed\\ data};
diff --git a/chapter06/content_ch06.tex b/chapter06/content_ch06.tex
index a9597f0..d722fa6 100644
--- a/chapter06/content_ch06.tex
+++ b/chapter06/content_ch06.tex
@@ -932,14 +932,14 @@ The real number of bits of the \ac{ADC} is not changed. The new number of bits i
\begin{figure}[H]
\centering
\begin{circuitikz}
- \draw (0,0) node[left,align=right]{Input $\underline{x}_i[n]$\\ Sample rate: $T_{S,i}$} to[twoport,t=$\uparrow M$,>,o-] ++(2,0) to[lowpass,>] ++(2,0) node[inputarrow,rotate=0]{} node[right,align=left]{Output $\underline{x}_o[n]$\\ Sample rate: $T_{S,o}$};
+ \draw (0,0) node[left,align=right]{Input $\underline{x}_i[n]$\\ Sample rate: $f_{S,i}$} to[twoport,t=$\uparrow M$,>,o-] ++(2,0) to[lowpass,>] ++(2,0) node[inputarrow,rotate=0]{} node[right,align=left]{Output $\underline{x}_o[n]$\\ Sample rate: $f_{S,o}$};
\end{circuitikz}
\caption{A up-sampler with a decimation factor of $M$}
\end{figure}
The ratio between output and input sampling rate is the \index{interpolation factor} \textbf{interpolation factor} $M$.
\begin{equation}
- M = \frac{T_{S,o}}{T_{S,i}} = \frac{\omega_{S,o}}{\omega_{S,i}} = \frac{T_{S,i}}{T_{S,o}} \qquad, M \in \mathbb{N}
+ M = \frac{f_{S,o}}{f_{S,i}} = \frac{\omega_{S,o}}{\omega_{S,i}} = \frac{T_{S,i}}{T_{S,o}} \qquad, M \in \mathbb{N}
\end{equation}
The decimation factor $M$ must be a positive integer.
\end{definition}
diff --git a/chapter07/content_ch07.tex b/chapter07/content_ch07.tex
index 82a4b01..6426c07 100644
--- a/chapter07/content_ch07.tex
+++ b/chapter07/content_ch07.tex
@@ -1266,7 +1266,7 @@ The increased bandwidth makes frequency-division spread spectrum techniques unat
\begin{itemize}
\item The sinc-function has a special property. It has \emph{zeros} at each $f = k \cdot \frac{1}{T_{sym,M}}$ (or as an angular freuqency $\omega = k \cdot \frac{2\pi}{T_{sym,M}}$) for all integer values except zero $k \in \mathbb{Z} \ \left\{0\right\}$.
\item If the centre frequency (sub-carrier frequency) of the neighbouring sub-bands were at these zeros of the sinc-function, the inter-carrier interference would be minimal.
- \item Because the sub-carrier frequency is in a zero of the sin-function, \textbf{all sub-carriers are orthogonal}.
+ \item Because the sub-carrier frequency is in a zero of the sinc-function, \textbf{all sub-carriers are orthogonal}.
\item This means that the optimal spacing between the carriers of the sub-bands $\Delta f_{sc-sc}$ (the \index{sub-carrier spacing} \textbf{sub-carrier spacing}) is
\begin{equation}
\Delta f_{sc-sc} = \frac{1}{T_{sym,M}} = f_{sym,M}