summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPhilipp Le <philipp-le-prviat@freenet.de>2020-05-13 02:10:49 +0200
committerPhilipp Le <philipp-le-prviat@freenet.de>2021-03-04 01:16:19 +0100
commite5fb861a713c472f837345425b406a917f02bd5c (patch)
tree194b092888322bfd08c2eaee99e8b693809b5f1d
parentd836ea127b872fde18da3b36dc02d093d34de9df (diff)
downloaddcs-lecture-notes-e5fb861a713c472f837345425b406a917f02bd5c.zip
dcs-lecture-notes-e5fb861a713c472f837345425b406a917f02bd5c.tar.gz
dcs-lecture-notes-e5fb861a713c472f837345425b406a917f02bd5c.tar.bz2
Adding chapter 3: Stochastic Processes
-rw-r--r--Makefile2
-rw-r--r--chapter03/content_ch03.tex339
-rw-r--r--main/DCS.tex9
-rw-r--r--main/chapter03.tex105
4 files changed, 452 insertions, 3 deletions
diff --git a/Makefile b/Makefile
index 8d017ab..ba10d73 100644
--- a/Makefile
+++ b/Makefile
@@ -4,7 +4,7 @@ BUILD_DIR = build
LATEXMK = latexmk -pdf -silent -synctex=1
LATEXMK_PVC = $(LATEXMK) -pvc
-ALL_CHAPTERS = $(BUILD_DIR)/chapter00.pdf $(BUILD_DIR)/chapter01.pdf $(BUILD_DIR)/chapter02.pdf
+ALL_CHAPTERS = $(BUILD_DIR)/chapter00.pdf $(BUILD_DIR)/chapter01.pdf $(BUILD_DIR)/chapter02.pdf $(BUILD_DIR)/chapter03.pdf
ALL_EXERCISES = $(BUILD_DIR)/exercise00.pdf $(BUILD_DIR)/exercise01.pdf $(BUILD_DIR)/exercise02.pdf
ALL_SVGS = $(BUILD_DIR)/svg/ch01_EM_Spectrum_Properties.pdf $(BUILD_DIR)/svg/ch01_Electromagnetic-Spectrum.pdf $(BUILD_DIR)/svg/ch01_NetworkTopologies.pdf
COMMON_DEPS = common/settings.tex common/titlepage.tex common/acronym.tex common/imprint.tex DCS.bib
diff --git a/chapter03/content_ch03.tex b/chapter03/content_ch03.tex
new file mode 100644
index 0000000..a9673c5
--- /dev/null
+++ b/chapter03/content_ch03.tex
@@ -0,0 +1,339 @@
+\chapter{Stochastic and Deterministic Processes}
+
+\begin{refsection}
+
+\section{Stochastic Processes}
+
+\begin{itemize}
+ \item Stochastic processes $\rightarrow$ random signal
+ \item No deterministic description
+ \item Description of random parameters (probability, ...)
+\end{itemize}
+
+\subsection{Statistic Mean}
+
+Given is family of curves $\vect{x}(t) = \left\{x_1(t), x_2(t), \dots, x_n(t)\right\}$:
+
+\begin{figure}[H]
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.25\textheight},
+ width=0.6\linewidth,
+ scale only axis,
+ xlabel={$t$},
+ ylabel={$x(t)$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=0,
+ xmax=11,
+ ymin=0,
+ ymax=1.7,
+ xtick={0, 1, ..., 10},
+ ytick={0, 0.5, ..., 1.5},
+ xticklabels={0, 1, $t_0$, 3, 4, ..., 10}
+ ]
+ \addplot[black, dashed, smooth, domain=1:10, samples=200] plot (\x,{1.5*abs(sinc((1/(2*pi))*\x))});
+ \pgfmathsetseed{100}
+ \addplot[red, smooth, domain=1:10, samples=50] plot (\x,{1.5*abs(sinc((1/(2*pi))*\x)) + 0.1*rand});
+ \addlegendentry{$x_1$};
+ \pgfmathsetseed{200}
+ \addplot[blue, smooth, domain=1:10, samples=50] plot (\x,{1.5*abs(sinc((1/(2*pi))*\x)) + 0.1*rand});
+ \addlegendentry{$x_2$};
+ \pgfmathsetseed{300}
+ \addplot[green, smooth, domain=1:10, samples=50] plot (\x,{1.5*abs(sinc((1/(2*pi))*\x)) + 0.1*rand});
+ \addlegendentry{$x_3$};
+ \addplot[black, very thick, dashed] coordinates {(2,0) (2,2.2)};
+ \end{axis}
+ \end{tikzpicture}
+ \caption{Family of random signals}
+\end{figure}
+
+\begin{itemize}
+ \item The curves are produced by a random process $\vect{x}(t)$. The random process is time-dependent.
+ \item All curves consist of random values, which are gathered around a mean value $\E\left\{\vect{x}(t)\right\}$.
+ \item The random process can emit any value $x$. However, each value $x$ has a certain probability $p(x, t)$. Again, the probability is time-dependent like the stochastic process.
+\end{itemize}
+
+Let's assume that the values are normally distributed. The \index{probability density function} \textbf{\ac{PDF}} $p(x, t)$ of a \index{normal distribution} \textbf{normal distribution} is:
+\begin{equation}
+ p(x, t) = \frac{1}{\sigma(t) \sqrt{2 \pi}} e^{-\frac{1}{2} \left(\frac{x - \mu(t)}{\sigma(t)}\right)^2}
+\end{equation}
+$p(x, t)$ is the probability that the stochastic process emits the value $x$ at time instance $t$. Both the mean of the normal distribution $\mu(t)$ and the standard deviation of the normal distribution $\sigma(t)$ are time-dependent.
+
+\begin{attention}
+ Do not confuse the mean of the normal distribution $\mu$ and the mean of a series of samples $\E\left\{\cdot\right\}$ (expectation value)!
+\end{attention}
+
+\begin{figure}[H]
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.25\textheight},
+ width=0.8\linewidth,
+ scale only axis,
+ xlabel={$x$},
+ ylabel={$p(x, t_0)$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-1.2,
+ xmax=4.2,
+ ymin=0,
+ ymax=1.2,
+ xtick={-1, 0, 1, 1.47, 2, 3, 4},
+ ytick={0, 0.5, ..., 2.0},
+ xticklabels={-1, 0, 1, $\E\left\{\vect{x}(t_0)\right\}$, 2, 3, 4}
+ ]
+ % ยต = 1.47, simga = 0.5
+ \addplot[red, thick, smooth, domain=, samples=200] plot (\x, {(1/(0.5*sqrt(2*pi)))*exp(-0.5*((\x-1.47)/0.5)^2)});
+
+ \addplot[black, very thick, dashed] coordinates {(1.47,0) (1.47,1)};
+ \end{axis}
+ \end{tikzpicture}
+ \caption{Probability for an output value of a stochastic process at time $t_0$ with $\mu(t_0) = 1.47$ and $\sigma(t_0) = 0.5$}
+\end{figure}
+
+Given that
+\begin{itemize}
+ \item We know neither the mean of the normal distribution $\mu(t)$ nor the standard deviation of the normal distribution $\sigma(t)$.
+ \item We only have $n$ samples of the curves $x_i(t_0)$ ($i \in \mathbb{N}, 0 \leq i \leq n$) at the time instance $t_0$.
+ \item We do know that the random distribution of our samples $x_i(t_0)$ follows the \ac{PDF} $p(x, t_0)$.
+\end{itemize}
+
+\paragraph{How do we get the mean of out samples $\E\left\{X(t_0)\right\}$? (Finite case)}
+
+The mean of the samples is the \index{expectation value} \textbf{expectation value} $\E\left\{\vect{x}(t_0)\right\}$. \nomenclature[Se]{$\E\left\{\cdot\right\}$}{Expectation value}
+
+To get an approximation, we can calculate the \index{arithmetic mean} \textbf{arithmetic mean} of out $n$ samples:
+\begin{equation}
+ \E\left\{\vect{x}(t_0)\right\} \approx \frac{1}{n} \sum\limits_{i = 0}^{n} x_i(t_0)
+ \label{eq:ch03:arith_mean}
+\end{equation}
+The approximation converges to the real $\E\left\{\vect{x}(t_0)\right\}$ for $n \rightarrow \infty$, because the random distribution of our samples $x_i(t_0)$ follows the \ac{PDF} $p(x, t_0)$.
+
+\paragraph{What about an arbitrary \ac{PDF}? (Continuous case)}
+
+\begin{itemize}
+ \item We cannot collect an indefinite number of samples.
+ \item However, if the \ac{PDF} is known, we can calculate the mean of our samples.
+\end{itemize}
+
+Extending, the arithmetic mean \eqref{eq:ch03:arith_mean}, with $n \rightarrow \infty$ and using all $x$ but weighted by their \ac{PDF} $p(x, t_0)$, we can determine the expectation value.
+\begin{definition}{Stochastic mean}
+ The \index{stochastic mean} \textbf{stochastic mean} of a \ac{PDF} is:
+ \begin{equation}
+ \E\left\{\vect{x}(t_0)\right\} = \int\limits_{-\infty}^{\infty} x \cdot p(x, t_0) \; \mathrm{d} x
+ \end{equation}%
+ \nomenclature[Se]{$\E\left\{\vect{x}\right\}$}{Stochastic mean}
+\end{definition}
+
+\begin{fact}
+ In general, stochastic means are time-dependent.
+\end{fact}
+
+\paragraph{Other measures?}
+
+The \index{quadratic stochastic mean} \textbf{quadratic stochastic mean}:
+\begin{equation}
+ \E\left\{\vect{x}^2(t_0)\right\} = \int\limits_{-\infty}^{\infty} x^2 \cdot p(x, t_0) \; \mathrm{d} x
+\end{equation}
+
+\subsection{Temporal Mean}
+
+Given is a random time-domain signal $x_i(t)$ (where $i \in \mathbb{N}$ an arbitrary integer index):
+
+\begin{figure}[H]
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.25\textheight},
+ width=0.6\linewidth,
+ scale only axis,
+ xlabel={$t$},
+ ylabel={$x_i(t)$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-5.5,
+ xmax=5.5,
+ ymin=0,
+ ymax=3.2,
+ xtick={-5, -4, ..., 5},
+ ytick={0, 1, ..., 3},
+ xticklabels={-5, -4, -3, -2, $-\frac{T}{2}$, 0, $\frac{T}{2}$, 2, 3, 4, 5}
+ ]
+ \pgfmathsetseed{100}
+ \addplot[red, smooth, domain=-5:5, samples=50] plot (\x,{1.5 + 0.8*rand});
+ \addplot[black, thick, dashed] coordinates {(-1,0) (-1,3.2)};
+ \addplot[black, thick, dashed] coordinates {(1,0) (1,3.2)};
+ \addplot[black, dashed] coordinates {(-5,1.5) (5,1.5)};
+ \end{axis}
+ \end{tikzpicture}
+ \caption{Random time-domain signal}
+\end{figure}
+
+\textit{Remark:} The signal can be a sample of a family of signals, but it is not required to be.
+
+The temporal mean is calculated as the arithmetic mean with following differences to \eqref{eq:ch03:arith_mean}:
+\begin{itemize}
+ \item The mean is calculation over the time, not over a number of samples.
+ \item For a time-continuous signal, the sum extends to an integral.
+ \item The arithmetic mean is calculated over the time interval $[-\frac{T}{2}, \frac{T}{2}]$. Let's make the interval indefinite.
+\end{itemize}
+
+\begin{definition}{Temporal mean}
+ The \index{temporal mean} \textbf{temporal mean} of time-domain signal $x_i(t)$ is:
+ \begin{equation}
+ \overline{x_i} = \E\left\{x_i(t)\right\} = \lim\limits_{T \rightarrow \infty} \frac{1}{T} \int\limits_{-\frac{T}{2}}^{\frac{T}{2}} x_i{t} \; \mathrm{d} t
+ \end{equation}%
+ \nomenclature[Sx]{$\overline{x}$, $\E\left\{x_i(t)\right\}$}{Temporal mean}
+\end{definition}
+
+The temporal mean is not time-dependent.
+
+\begin{fact}
+ In general, temporal means are sample-dependent.
+\end{fact}
+
+Actually $x_i(t)$ would not need the index $i$ if there is only one sample. Nevertheless, it was kept here, to emphasize the dependency on the sample, in contrast to the dependency on the time of the stochastic mean.
+
+\paragraph{Other measures?}
+
+The \index{quadratic temporal mean} \textbf{quadratic temporal mean}:
+\begin{equation}
+ \overline{x^2_i} = \E\left\{x^2_i(t)\right\} = \lim\limits_{T \rightarrow \infty} \frac{1}{T} \int\limits_{-\frac{T}{2}}^{\frac{T}{2}} |x_i{t}|^2 \; \mathrm{d} t
+\end{equation}
+
+\subsection{Ergodic Processes}
+
+\begin{definition}{Ergodic process}
+ \index{ergodic process} A process is \textbf{ergodic} if:
+ \begin{enumerate}
+ \item The stochastic means are equal at all times.
+ \begin{equation}
+ \E\left\{\vect{x}(t_0)\right\} = \E\left\{\vect{x}(t_1)\right\} = \dots = \E\left\{\vect{x}\right\}
+ \end{equation}
+ \item The temporal means of all samples are equal.
+ \begin{equation}
+ \overline{x_1} = \overline{x_2} = \dots = \overline{x}
+ \end{equation}
+ \item The stochastic mean equals the temporal mean.
+ \begin{equation}
+ \E\left\{\vect{x}\right\} = \overline{x} = \mu_x
+ \end{equation}
+ \end{enumerate}
+\end{definition}
+
+As a consequence:
+\begin{itemize}
+ \item One single, sufficiently long, random sample of the process is enough to deduct the statistical properties of an ergodic process.
+ \item The ergodic process is in steady state, i.e., it does not erratically change its behaviour and properties.
+\end{itemize}
+
+\begin{figure}[H]
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.25\textheight},
+ width=0.6\linewidth,
+ scale only axis,
+ xlabel={$t$},
+ ylabel={$x_i(t)$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-5.5,
+ xmax=5.5,
+ ymin=0,
+ ymax=3.2,
+ xtick={-5, -4, ..., 5},
+ ytick={0, 1, ..., 3},
+ xticklabels={-5, -4, -3, -2, $-\frac{T}{2}$, 0, $\frac{T}{2}$, 2, 3, 4, 5}
+ ]
+ \pgfmathsetseed{100}
+ \addplot[red, smooth, domain=-5:5, samples=50] plot (\x,{1.5 + 0.8*rand});
+ \addlegendentry{$x_1$};
+ \pgfmathsetseed{200}
+ \addplot[blue, smooth, domain=-5:5, samples=50] plot (\x,{1.5 + 0.8*rand});
+ \addlegendentry{$x_2$};
+ \pgfmathsetseed{300}
+ \addplot[green, smooth, domain=-5:5, samples=50] plot (\x,{1.5 + 0.8*rand});
+ \addlegendentry{$x_3$};
+ \addplot[black, dashed] coordinates {(-5,1.5) (5,1.5)};
+ \addlegendentry{$\mu_x$};
+ \end{axis}
+ \end{tikzpicture}
+ \caption{Three samples of the same ergodic process}
+\end{figure}
+
+\subsection{Cross-Correlation}
+
+\section{Spectral Density}
+
+\subsection{Autocorrelation}
+
+\subsection{Energy and Power Spectral Density}
+
+\subsection{Decibel}
+
+\section{Noise}
+
+\subsection{Types of Noise}
+
+\subsection{Thermal Noise}
+
+\subsection{White Noise}
+
+\subsection{Noise Floor and Noise Figure}
+
+\phantomsection
+\addcontentsline{toc}{section}{References}
+\printbibliography[heading=subbibliography]
+\end{refsection}
+
diff --git a/main/DCS.tex b/main/DCS.tex
index dab7e41..0bc5c75 100644
--- a/main/DCS.tex
+++ b/main/DCS.tex
@@ -38,8 +38,8 @@
\newpage
% Nomenclature
-\phantomsection
-\addcontentsline{toc}{chapter}{Nomenclature}
+\phantomsection
+\addcontentsline{toc}{chapter}{Nomenclature}
\printnomenclature
\newpage
@@ -69,6 +69,11 @@
\input{../exercise02/exercise02.tex}
\clearpage
+\input{../chapter03/content_ch03.tex}
+\clearpage
+%\input{../exercise03/exercise03.tex}
+\clearpage
+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Appendix
diff --git a/main/chapter03.tex b/main/chapter03.tex
new file mode 100644
index 0000000..206afc5
--- /dev/null
+++ b/main/chapter03.tex
@@ -0,0 +1,105 @@
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Configuration
+\def\thekindofdocument{Lecture Notes}
+\def\thesubtitle{Chapter 3: Stochastic and Deterministic Processes}
+\def\therevision{1}
+\def\therevisiondate{2020-05-11}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Header
+\input{../common/settings.tex}
+
+\begin{document}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Title Page
+\pagenumbering{Alph}
+\pagestyle{empty}
+
+% Title Page
+\input{../common/titlepage.tex}
+\newpage
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Preface
+\pagenumbering{arabic}
+\pagestyle{headings}
+
+% Inhaltsverzeichnis
+%\tableofcontents
+%\newpage
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Content
+
+\setcounter{chapter}{2}
+
+\input{../chapter03/content_ch03.tex}
+\clearpage
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Appendix
+
+\begin{appendix}
+
+%\include{appendix/crlb}
+
+\end{appendix}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Nachtrag
+
+% References
+%\bibliographystyle{unsrt}
+%\bibliography{Masterarbeit}
+
+% List of Acronyms
+\input{../common/acronym.tex}
+\newpage
+
+% Notation
+%\include{formales/notation}
+%\newpage
+
+% List of Symbols
+%\include{formales/formelzeichen}
+\newpage
+
+% List of Block Diagram Symbols
+%\include{formales/blockfigures}
+\newpage
+
+% Print default index
+\phantomsection
+\addcontentsline{toc}{chapter}{Index}
+\printindex
+\newpage
+
+% List of Figures
+\phantomsection
+\addcontentsline{toc}{chapter}{\listfigurename}
+\listoffigures
+\newpage
+
+% List of Tables
+\phantomsection
+\addcontentsline{toc}{chapter}{\listtablename}
+\listoftables
+\newpage
+
+% Nomenclature
+\phantomsection
+\addcontentsline{toc}{chapter}{Nomenclature}
+\printnomenclature
+\newpage
+
+% Imprint
+\input{../common/imprint.tex}
+\newpage
+
+% To Do
+\pagenumbering{alph}
+%\listoftodos
+
+\end{document}