summaryrefslogtreecommitdiff
path: root/chapter02/content_ch02.tex
diff options
context:
space:
mode:
authorPhilipp Le <philipp-le-prviat@freenet.de>2020-05-07 00:38:41 +0200
committerPhilipp Le <philipp-le-prviat@freenet.de>2021-03-04 01:16:19 +0100
commit0ed9259fa21d69b9c77390d150a6e623e638ae75 (patch)
treefecbc85a04e355efd4db78a4f3e8397111950350 /chapter02/content_ch02.tex
parente86abee0c183583d5daa57e8b3bb4a9f14c3332c (diff)
downloaddcs-lecture-notes-0ed9259fa21d69b9c77390d150a6e623e638ae75.zip
dcs-lecture-notes-0ed9259fa21d69b9c77390d150a6e623e638ae75.tar.gz
dcs-lecture-notes-0ed9259fa21d69b9c77390d150a6e623e638ae75.tar.bz2
WIP: Chapter 2
Diffstat (limited to 'chapter02/content_ch02.tex')
-rw-r--r--chapter02/content_ch02.tex166
1 files changed, 159 insertions, 7 deletions
diff --git a/chapter02/content_ch02.tex b/chapter02/content_ch02.tex
index 9dc7df2..41ddc15 100644
--- a/chapter02/content_ch02.tex
+++ b/chapter02/content_ch02.tex
@@ -588,14 +588,24 @@ The inner integral is the \textbf{continuous Fourier transform}, also called onl
The \index{continuous Fourier transform} \textbf{continuous Fourier transform} of the function $\underline{x}(t)$ is:
\begin{equation}
\underline{X}(j \omega) = \mathcal{F} \left\{\underline{x}(t)\right\} = \int\limits_{t = -\infty}^{\infty} \underline{x}(t) \cdot e^{-j \omega t} \, \mathrm{d} t
+ \label{eq:ch02:def_fourier_transform}
\end{equation}
The \index{inverse Fourier transform} \index{inverse continuous Fourier transform} \textbf{inverse (continuous) Fourier transform} is:
\begin{equation}
\underline{x}(t) = \mathcal{F}^{-1} \left\{\underline{X}(j \omega)\right\} = \frac{1}{2 \pi} \int\limits_{\omega = -\infty}^{\infty} \underline{X}(j \omega) \cdot e^{+j \omega t} \, \mathrm{d} \omega
+ \label{eq:ch02:def_inv_fourier_transform}
\end{equation}
\end{definition}
+The Fourier transform $\mathcal{F} \left\{\underline{x}(t)\right\}$ and its inverse $\mathcal{F}^{-1} \left\{\underline{X}(j \omega)\right\}$ both yield functions which depend on $t$ or $\omega$, respectively. This relation is sometimes emphasized by appending $(t)$ or $\left(j \omega\right)$.
+\begin{subequations}
+ \begin{align}
+ \mathcal{F} \left\{\underline{x}(t)\right\} &= \mathcal{F} \left\{\underline{x}(t)\right\} \left(j \omega\right) \\
+ \mathcal{F}^{-1} \left\{\underline{X}(j \omega)\right\} &= \mathcal{F}^{-1} \left\{\underline{X}(j \omega)\right\} (t)
+ \end{align}
+\end{subequations}
+
\subsection{Amplitude and Phase Spectra}
The value-continuous complex frequency variable $j \omega$ in the continuous Fourier transforms replaced the value-discrete index $n$ of the Fourier series. Due to their similarity, the constraints for all signals and the \index{spectrum!symmetry rules} \textbf{symmetry rules} for real-valued signals apply analogously.
@@ -645,7 +655,7 @@ where $\mathrm{sinc}(t)$ is the \emph{normalized} sinc function.
\end{equation*}
\end{attention}
-The resulting spectra of $\underline{X}\left(j \omega\right)$ can now be drawn. The rectangular function is special. The imaginary part $\Im\left\{\underline{X}\left(j \omega\right)\right\} = 0$ is zero. Thus, the phase can only be $0$ or $\pm \pi$. However, this is a special property of the sinc function, but not of every function.
+The resulting spectra of $\underline{X}\left(j \omega\right)$ can now be drawn. The rectangular function is special. The imaginary part $\Im\left\{\underline{X}\left(j \omega\right)\right\} = 0$ is zero. Thus, the phase can only be $0$ or $\pm \pi$. However, this is a special property of all functions which are real-valued and even in the time domain like the sinc function.
\begin{figure}[H]
\centering
@@ -841,21 +851,163 @@ Using the Dirac measure, the Fourier transform can be calculated:
\end{equation}
The Fourier transform of the Dirac delta function is the frequency-independent constant $1$.
-\subsection{Operations 1: Linearity}
+\subsection{Basic Properties}
+
+All properties of the Fourier transform can be proven using the definition of the Fourier transform \eqref{eq:ch02:def_fourier_transform}.
+
+\subsubsection{Linearity}
+
+%\begin{equation}
+
+%\end{equation}
+
+\begin{definition}{Linearity of the Fourier transform}
+ \begin{equation}
+ \mathcal{F}\left\{\underline{a} \cdot \underline{f}(t) + \underline{b} \cdot \underline{g}(t)\right\} = \underline{a} \cdot \mathcal{F}\left\{\underline{f}(t)\right\} + \underline{b} \cdot \mathcal{F}\left\{\underline{g}(t)\right\}
+ \label{eq:ch02:op_lin}
+ \end{equation}
+ where
+ \begin{itemize}
+ \item $\underline{a} \in \mathbb{C}$ and $\underline{b} \in \mathbb{C}$ are complex numbers and
+ \item $\underline{f}(t)$ and $\underline{g}(t)$ are Fourier-transformable functions.
+ \end{itemize}
+\end{definition}
+
+\subsubsection{Differentiation and Integration}
+
+\begin{definition}{Differentiation of the Fourier transform}
+ \begin{equation}
+ \mathcal{F}\left\{\frac{\mathrm{d}^n}{\mathrm{d} t^n} \underline{f}(t)\right\} = \left(j \omega\right)^n \underbrace{\underline{F} \left(j \omega\right)}_{= \mathcal{F}\left\{\underline{f}(t)\right\}}
+ \label{eq:ch02:op_diff}
+ \end{equation}
+\end{definition}
+
+\begin{definition}{Integration of the Fourier transform}
+ \begin{equation}
+ \mathcal{F}\left\{\int\limits_{t'= -\infty}^{t} \underline{f}(t') \, \mathrm{d} t' \right\} = \frac{1}{j \omega} \underbrace{\underline{F} \left(j \omega\right)}_{= \mathcal{F}\left\{\underline{f}(t)\right\}}
+ \label{eq:ch02:op_int}
+ \end{equation}
+\end{definition}
+
+\begin{excursus}{Network analysis of reactive electrical circuits}
+ Linear, reactive electrical networks are analysed using the Fourier transform.
+
+ For example, voltage and current have following relation in time domain at a capacity:
+ \begin{equation}
+ u(t) = \frac{1}{C} \int i(t) \, \mathrm{d} t
+ \end{equation}
+ The expression in complex-valued phasors (frequency domain) is:
+ \begin{equation}
+ \underline{U} = \underline{Z}_C \cdot \underline{I}
+ \end{equation}
+ Using the Fourier transform, the impedance $\underline{Z}_C$ can be determined to:
+ \begin{equation}
+ \underline{Z}_C = \frac{1}{j \omega C}
+ \end{equation}
+
+ The calculation is analogous for inductances. The volatge-current relation in the time domain is:
+ \begin{equation}
+ u(t) = L \cdot \frac{\mathrm{d}}{\mathrm{d} t} i(t)
+ \end{equation}
+ The complex-valued impedance $\underline{Z}_L$ (frequency domain) is:
+ \begin{equation}
+ \underline{Z}_L = j \omega L
+ \end{equation}
+\end{excursus}
+
+\subsubsection{Multiplication}
+
+\begin{definition}{Convolution theorem}
+ A multiplication in the time-domain becomes a convolution in the frequency domain.
+ \begin{equation}
+ \mathcal{F}\left\{ \underline{f}(t) \cdot \underline{g}(t) \right\} = \frac{1}{2 \pi} \mathcal{F}\left\{\underline{f}(t)\right\} * \mathcal{F}\left\{\underline{g}(t)\right\}
+ \label{eq:ch02:op_mult}
+ \end{equation}
+\end{definition}
-\subsection{Operations 2: Differentiation and Integration}
+\begin{excursus}{Convolution}
+ The convolution is defined to:
+ \begin{equation}
+ f(t) * g(t) = \left(f * g\right) (t) = \int_{\tau = -\infty}^{\infty} f(\tau) g(t - \tau) \, \mathrm{d} \tau
+ \label{eq:ch02:def_convolution}
+ \end{equation}
+\end{excursus}
-\subsection{Operations 3: Multiplication}
+\subsubsection{Time Shift}
-\subsection{Operations 4: Time Shift}
+%Let
+%\begin{equation}
+% h(t) = \underline{f}(t - t_0)
+%\end{equation}
+
+\begin{definition}{Translation}
+ \begin{equation}
+ \mathcal{F}\left\{\underline{f}(t - t_0)\right\} = e^{-j t_0 \omega} \cdot \underbrace{\underline{F} \left(j \omega\right)}_{= \mathcal{F}\left\{\underline{f}(t)\right\}}
+ \label{eq:ch02:op_time_shift}
+ \end{equation}
+ where
+ \begin{itemize}
+ \item $t_0 \in \mathbb{R}$ is a real number and
+ \item $\underline{f}(t)$ is a Fourier-transformable function.
+ \end{itemize}
+\end{definition}
\subsection{Duality}
+\begin{definition}{Duality}
+ Suppose $\underline{g}(t)$ has a Fourier transform $\underline{G}\left(j \omega\right)$, i.e., $\underline{g} \TransformHoriz \underline{G}$. The Fourier transform of $\underline{G}(t)$ is:
+ \begin{equation}
+ \mathcal{F}\left\{\underline{G}(t)\right\} = \underline{g} \left(- j \omega\right)
+ \label{eq:ch02:op_duality}
+ \end{equation}
+\end{definition}
+
+An example for the duality is, the frequency shift. We already know the Fourier transform of the time shift \eqref{eq:ch02:op_time_shift}.
+\begin{equation}
+ \mathcal{F}\left\{e^{j \omega_0 t} \underline{f}(t)\right\} = \underbrace{\underline{F} \left(j (\omega - \omega_0)\right)}_{= \mathcal{F}\left\{\underline{f}(t)\right\} \left( j (\omega - \omega_0) \right)}
+ \label{eq:ch02:op_freq_shift}
+\end{equation}
+
+Another example is the convolution in time-domain. Due to the duality, it becomes a multiplication the frequency domain.
+\begin{equation}
+ \mathcal{F}\left\{ \underline{f}(t) * \underline{f}(t) \right\} = \mathcal{F}\left\{\underline{f}(t)\right\} \cdot \mathcal{F}\left\{\underline{g}(t)\right\}
+ \label{eq:ch02:op_conv}
+\end{equation}
+
+\begin{figure}[H]
+ \centering
+ \begin{tikzpicture}
+ \node[align=center, minimum width=2.5cm, minimum height=1.5cm] (TD1) {$\underline{f}(t) \cdot \underline{g}(t)$};
+ \node[align=center, minimum width=2.5cm, minimum height=1.5cm, right=3.5cm of TD1] (TD2) {$\underline{f}(t) * \underline{f}(t)$};
+ \node[align=center, minimum width=2.5cm, minimum height=1.5cm, below=2cm of TD1] (FD1) {$\frac{1}{2 \pi} \left(\underline{F}\left(j \omega\right) * \underline{G}\left(j \omega\right)\right)$};
+ \node[align=center, minimum width=2.5cm, minimum height=1.5cm, below=2cm of TD2] (FD2) {$\underline{F}\left(j \omega\right) \cdot \underline{G}\left(j \omega\right)$};
+
+ \node[align=right, anchor=east, left=3cm of TD1] (LabelTD) {\textbf{Time domain}};
+ \node[align=right, anchor=east, below=2cm of LabelTD] (LabelFD) {\textbf{Frequency domain}};
+ \node[align=right, above=1cm of TD1] (Func1) {\textbf{Function 1}};
+ \node[align=right, above=1cm of TD2] (Func2) {\textbf{Function 2}};
+
+ %\draw (TD1) node[midway, align=right, rotate=-90]{$\TransformHoriz$} (FD1);
+ %\draw (TD2) node[midway, align=right, rotate=-90]{$\TransformHoriz$} (FD2);
+ \draw[o-*, thick] (TD1.south) -- (FD1.north);
+ \draw[o-*, thick] (TD2.south) -- (FD2.north);
+
+ \draw[thick] (TD1.south east) -- (FD2.north west);
+ \draw[thick] (TD2.south west) -- (FD1.north east);
+ \end{tikzpicture}
+ \caption{Duality}
+\end{figure}
+
+The duality also affects the units of the time variable $t$ and the frequency variable $\omega$. The units must be inverse. If $t$ is in seconds, $\omega$ must be \si{1/s}.
+
+
\section{\acs{LTI} Systems}
-\subsection{Transfer Function and Impulse Response}
+\subsection{Transfer Function}
+
+\subsection{Impulse Response}
-\subsection{Convolution}
+% Convolution
\subsection{Poles and Zeroes}