diff options
| author | Philipp Le <philipp-le-prviat@freenet.de> | 2020-05-04 23:49:33 +0200 |
|---|---|---|
| committer | Philipp Le <philipp-le-prviat@freenet.de> | 2021-03-04 01:16:19 +0100 |
| commit | 40902b30d01ff26deba8af6c7235fd87975c8f75 (patch) | |
| tree | ac4f8abb981ecdcceb25898bef078c2406c6281e /chapter02/content_ch02.tex | |
| parent | a7c67a1838333228a647a8d783bd6acfd8ae7f23 (diff) | |
| download | dcs-lecture-notes-40902b30d01ff26deba8af6c7235fd87975c8f75.zip dcs-lecture-notes-40902b30d01ff26deba8af6c7235fd87975c8f75.tar.gz dcs-lecture-notes-40902b30d01ff26deba8af6c7235fd87975c8f75.tar.bz2 | |
Amending chapter 1
Diffstat (limited to 'chapter02/content_ch02.tex')
| -rw-r--r-- | chapter02/content_ch02.tex | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/chapter02/content_ch02.tex b/chapter02/content_ch02.tex index d0cc535..0105403 100644 --- a/chapter02/content_ch02.tex +++ b/chapter02/content_ch02.tex @@ -230,7 +230,7 @@ $w(x)$ is a non-negative weight function, which is $w(x) = 1$ in simple cases li Now, you can prove that the cosine and sine functions are orthogonal to each other. \begin{equation} - \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \cos\left(n \omega_0 t\right) \sin\left(m \omega_0 t\right) \, \mathrm{d} t = 0 \qquad \forall n, m \in \mathbb{Z} + \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \cos\left(n \omega_0 t\right) \sin\left(m \omega_0 t\right) \, \mathrm{d} t = 0 \qquad \forall \; n, m \in \mathbb{Z} \label{eq:ch02:orth_rel_cos_sin} \end{equation} |
