summaryrefslogtreecommitdiff
path: root/chapter02/content_ch02.tex
diff options
context:
space:
mode:
authorPhilipp Le <philipp-le-prviat@freenet.de>2020-05-03 16:13:40 +0200
committerPhilipp Le <philipp-le-prviat@freenet.de>2021-03-04 01:16:19 +0100
commit7415629cde3b98b8ebd86d99542db9ff909382dd (patch)
tree7ac7841effca08584c879a36c2f8882bea996858 /chapter02/content_ch02.tex
parent7835706d922bccc9873eeee671ae119e51768daf (diff)
downloaddcs-lecture-notes-7415629cde3b98b8ebd86d99542db9ff909382dd.zip
dcs-lecture-notes-7415629cde3b98b8ebd86d99542db9ff909382dd.tar.gz
dcs-lecture-notes-7415629cde3b98b8ebd86d99542db9ff909382dd.tar.bz2
WIP: Electromagnetic spectrum
Diffstat (limited to 'chapter02/content_ch02.tex')
-rw-r--r--chapter02/content_ch02.tex45
1 files changed, 42 insertions, 3 deletions
diff --git a/chapter02/content_ch02.tex b/chapter02/content_ch02.tex
index 8a9ec88..4ab3dea 100644
--- a/chapter02/content_ch02.tex
+++ b/chapter02/content_ch02.tex
@@ -109,9 +109,50 @@ When a signal passes through a \ac{LTI} system, the amplitude, the phase or both
\end{itemize}
remain. Both are absorbed by the complex-valued \index{phasor} \textbf{phasor} $\underline{X}$, which uniquely describes a mono-chromatic signal.
\begin{equation}
- \underline{X} = \hat{X} \cdot e^{-j \varphi_0}
+ \underline{X} = \hat{X} \cdot e^{-j \varphi_0} = \hat{X} \angle -\varphi_0
\end{equation}
+\begin{excursus}{Complex numbers}
+ $j$ is the \index{imaginary unit} \textbf{imaginary unit}. It satisfies the equation
+ \begin{equation}
+ j^2 = -1
+ \end{equation}
+ There is no real number $j \notin \mathbb{R}$ which satisfies the above solution. $j$ spans the set of complex numbers $\mathbb{C}$.
+
+ In mathematics, the imaginary unit is noted as $i$. In engineering context, $j$ is used instead, because $i$ is the symbol of the electric current.
+
+ A complex number $\underline{c} \in \mathbb{C}$ can be noted in \index{cartesian form} \textbf{cartesian form}:
+ \begin{equation}
+ \underline{c} = a + j b
+ \end{equation}
+ $a \in \mathbb{R}$ is the \index{real part} \textbf{real part} of $\underline{c}$. $b \in \mathbb{R}$ is the \index{imaginary part} \textbf{imaginary part} $\underline{c}$.
+ \begin{subequations}
+ \begin{align}
+ a &= \Re\{\underline{c}\} \\
+ b &= \Im\{\underline{c}\}
+ \end{align}
+ \end{subequations}
+ Complex numbers $\underline{c}$ always carry an underline in this lecture to distinguish them from real numbers. However, this is not mandatory.
+
+ Another notation is the \index{polar form} \textbf{polar form}:
+ \begin{equation}
+ \underline{c} = r \cdot e^{j \varphi}
+ \end{equation}
+ with
+ \begin{subequations}
+ \begin{align}
+ r &= |\underline{c}| = \sqrt{\Re\{\underline{c}\}^2 + \Im\{\underline{c}\}^2} \\
+ \varphi &= \mathrm{atan2} \left(\Im\{\underline{c}\}, \Re\{\underline{c}\}\right) \\
+ e^{j \varphi} &= \cos \varphi + j \sin \varphi
+ \end{align}
+ \end{subequations}
+ The polar form can be written in \index{angle notation} \textbf{angle notation}:
+ \begin{equation}
+ \underline{c} = r \angle \varphi
+ \end{equation}
+ $r \in \mathbb{R}$ and $\varphi \in \mathbb{R}$ are the \index{polar coordinates} \textbf{polar coordinates}.
+\end{excursus}
+
The phasor $\underline{X} \in \mathbb{C}$ is a complex number, which is mostly represented in polar coordinates (see Figure \ref{fig:ch02:cmplxplane_phasor}).
\begin{figure}[H]
@@ -146,8 +187,6 @@ The real-valued function can be obtained by extracting the real part of the comp
x_{mc}(t) = \Re\left\{\underline{x_{mc}}(t)\right\}
\end{equation}
-% Exercise: Is a sine wave with DC bias mono-chromatic -> no
-
\section{Periodic Signals and Fourier Series}
Periodic signals $x_p(t)$ comprises a class of signals which indefinitely repeat at constant time intervals $T_0$.