summaryrefslogtreecommitdiff
path: root/chapter02
diff options
context:
space:
mode:
authorPhilipp Le <philipp-le-prviat@freenet.de>2020-05-04 01:22:22 +0200
committerPhilipp Le <philipp-le-prviat@freenet.de>2021-03-04 01:16:19 +0100
commita7c67a1838333228a647a8d783bd6acfd8ae7f23 (patch)
tree942583b8712125aeb158664327f3e06ffeb49971 /chapter02
parent7415629cde3b98b8ebd86d99542db9ff909382dd (diff)
downloaddcs-lecture-notes-a7c67a1838333228a647a8d783bd6acfd8ae7f23.zip
dcs-lecture-notes-a7c67a1838333228a647a8d783bd6acfd8ae7f23.tar.gz
dcs-lecture-notes-a7c67a1838333228a647a8d783bd6acfd8ae7f23.tar.bz2
Finishing chapter 1
Diffstat (limited to 'chapter02')
-rw-r--r--chapter02/content_ch02.tex23
1 files changed, 18 insertions, 5 deletions
diff --git a/chapter02/content_ch02.tex b/chapter02/content_ch02.tex
index 4ab3dea..d0cc535 100644
--- a/chapter02/content_ch02.tex
+++ b/chapter02/content_ch02.tex
@@ -1,4 +1,4 @@
-\chapter{Signals and Systems}
+\chapter{Time-Continuous Signals and Systems}
\begin{refsection}
@@ -322,10 +322,14 @@ A special case is the coefficient $\tilde{a}_0$.
\end{equation}
$\cos\left(n \omega_0 t\right)$ is $1$ for $n = 0$. $\tilde{a}_0$ is the \index{DC offset} \textbf{\ac{DC} offset} of the signal. The above formula is known as the calculation of the signal mean in electrical engineering.
-The composition of a series of mono-chromatic signals as shown in \eqref{eq:ch02:fourier_series} is called \index{Fourier series} \textbf{Fourier series}.
-\begin{equation*}
- x_p(t) = \sum\limits_{n=1}^{\infty} a_n \cos\left(n \omega_0 t\right) + \sum\limits_{m=1}^{\infty} b_m \sin\left(m \omega_0 t\right)
-\end{equation*}
+\begin{definition}{Fourier series}
+ The composition of a series of mono-chromatic signals as shown in \eqref{eq:ch02:fourier_series} is called \index{Fourier series} \textbf{Fourier series}.
+ \begin{equation*}
+ x_p(t) = \sum\limits_{n=1}^{\infty} a_n \cos\left(n \omega_0 t\right) + \sum\limits_{m=1}^{\infty} b_m \sin\left(m \omega_0 t\right)
+ \end{equation*}
+
+ The coefficients can be calculated using \eqref{eq_ch02_fourier_series_coeff_an} and \eqref{eq_ch02_fourier_series_coeff_bm}.
+\end{definition}
\subsection{Complex-Valued Fourier Series}
@@ -347,6 +351,15 @@ It is based on the orthogonality relation:
\label{eq:ch02:orth_rel_exp}
\end{equation}
+\begin{definition}{Complex-Valued Fourier series}
+ A complex-valued, periodic signal $\underline{x_p}(t)$ can be decomposed into a series complex-valued mono-chromatic signals \eqref{eq:ch02:fourier_series_cmplx} -- the \index{Fourier series!complex-valued} \textbf{complex-valued Fourier series}.
+ \begin{equation*}
+ \underline{x_p}(t) = \sum\limits_{n = -\infty}^{\infty} \underline{c}_n \cdot e^{j n \omega_0 t} \qquad \forall \; n \in \mathbb{Z}
+ \end{equation*}
+
+ The coefficients can be calculated using \eqref{eq_ch02_fourier_series_coeff_cn}.
+\end{definition}
+
\subsection{Amplitude and Phase Spectra}
\section{Non-Periodic Signals and Fourier Transform}