diff options
| author | Philipp Le <philipp-le-prviat@freenet.de> | 2020-05-10 17:38:22 +0200 |
|---|---|---|
| committer | Philipp Le <philipp-le-prviat@freenet.de> | 2021-03-04 01:16:19 +0100 |
| commit | f02225dba2614611ec6e49fa5fc01e111000b2bc (patch) | |
| tree | e7d4baf77e332bb8e0bc8bcc22b6482b25b3a7e6 /chapter02 | |
| parent | 9cf53248f436a1e1e22b2069ec3616f1b70dd1b6 (diff) | |
| download | dcs-lecture-notes-f02225dba2614611ec6e49fa5fc01e111000b2bc.zip dcs-lecture-notes-f02225dba2614611ec6e49fa5fc01e111000b2bc.tar.gz dcs-lecture-notes-f02225dba2614611ec6e49fa5fc01e111000b2bc.tar.bz2 | |
Chapter 2: Content complete
Diffstat (limited to 'chapter02')
| -rw-r--r-- | chapter02/content_ch02.tex | 158 |
1 files changed, 152 insertions, 6 deletions
diff --git a/chapter02/content_ch02.tex b/chapter02/content_ch02.tex index 02bc5d9..a78a02b 100644 --- a/chapter02/content_ch02.tex +++ b/chapter02/content_ch02.tex @@ -27,6 +27,8 @@ Furthermore, the signals considered here are time-continuous. \section{Mono-Chromatic Signals} +\subsection{Real-Valued Signals and Phasor} + \paragraph{Representation by A Real-Valued Function.} The mono-chromatic signal $x_{mc}(t)$ is defined by: @@ -86,7 +88,41 @@ The actual unit of the signal is derived from its amplitude $\hat{X}$ which can A graphical view on the creation of a cosine signal is depicted in Figure \ref{fig:ch02:cos_creation}. \begin{figure}[H] - \caption{Imagine, there is a pointer (red) with one side fixed to a point. Now, it begins rotating counter-clockwise with an angular frequency of $\omega_0$ (blue). The arrow of the pointer draws a circle (left side). Each angle of the pointer is related to a time instance (green). The blue pointer is the current position at time instance $t$. Its vertical value is projected into the time plot, forming the cosine wave (orange).} + \centering + \begin{tikzpicture} + \begin{scope}[shift={(0, 0)}] + \draw[-latex] (0,0) -- (4.5,0) node[below, align=left]{$t$};
+ \draw[-latex] (0,-2.2) -- (0,2.2); + \draw (1,0.1) -- (1,-0.1) node[below, align=center]{$\frac{T_0}{4}$}; + \draw (2,0.1) -- (2,-0.1) node[below, align=center]{$\frac{T_0}{2}$}; + \draw (3,0.1) -- (3,-0.1) node[below, align=center]{$\frac{3 T_0}{4}$}; + \draw (4,0.1) -- (4,-0.1) node[below, align=center]{$T_0$}; + + \draw (0.5,0.1) -- (0.5,-0.1) node[below, align=center]{$t'$}; + + \draw[red, thick, smooth, domain=0:4, samples=40] plot (\x, {2*cos( 360 * \x / 4 )}); + \end{scope} + \begin{scope}[shift={(-4, 0)}] + \draw[draw] (0:2) arc(0:360:2); + \draw[-latex] (0,0) -- (0,1) node[right, align=left]{$\Re$};
+ \draw[-latex] (0,0) -- (-1,0) node[below, align=center]{$\Im$}; + + \draw (180:1.9) -- (180:2.1) node[left, align=center]{$\frac{T_0}{4}$}; + \draw (270:1.9) -- (270:2.1) node[below, align=center]{$\frac{T_0}{2}$}; + \draw (0:1.9) -- (0:2.1) node[right, align=center]{$\frac{3 T_0}{4}$}; + \draw (90:1.9) -- (90:2.1) node[above, align=center]{$0$ and $T_0$}; + + \draw (135:1.9) -- (135:2.1) node[above left, align=right]{$t'$}; + + \draw[very thick, blue, -latex] (135:0) -- (135:2); + + + \draw[thick, green, -latex] (125:1) arc(125:235:1) node[right, align=left]{$\omega_0$}; + \end{scope} + + \draw[dashed] (-5.414, 1.414) -- (0.5, 1.414) -- (0.5, 0); + \end{tikzpicture} + \caption[Generation of a sinusoidal shape]{Generation of a sinusoidal shape. Imagine, there is a pointer (blue) with one side fixed to a point. Now, it begins rotating counter-clockwise with an angular frequency of $\omega_0$ (green). The arrow of the pointer draws a circle (left side). Each angle of the pointer is related to a time instance. The blue pointer is the current position at time instance $t'$. Its vertical value is projected into the time plot, forming the cosine wave (red).} \label{fig:ch02:cos_creation} \end{figure} @@ -177,18 +213,49 @@ Figure \ref{fig:ch02:cmplxplane_phasor} depicts the phasor in the complex plane. The phasor of a signal is a signal parameter, constant and \underline{not} time-dependent. \end{fact} -The current position of the pointer $\underline{x}(t)$ in the complex plane is obtained by rotating it. It makes a full rotation each $T_0$ periods. Therefore, it rotates at an angular frequency of $\omega_0$. The rotation is a multiplication by $e^{j \omega t}$ in the complex plane. $\underline{x}(t) \in \mathbb{C}$ is a complex value, too. +The current position of the pointer $\underline{x}(t)$ in the complex plane is obtained by rotating it. It makes a full rotation each $T_0$ periods. Therefore, it rotates at an angular frequency of $\omega_0$. The rotation is a multiplication by $e^{j \omega_0 t}$ in the complex plane. $\underline{x}(t) \in \mathbb{C}$ is a complex value, too. \begin{equation} - \underline{x_{mc}}(t) = \underline{X} \cdot e^{j \omega t} = \hat{X} \cdot e^{-j \varphi_0} \cdot e^{j \omega t} + \underline{x_{mc}}(t) = \underline{X} \cdot e^{j \omega_0 t} = \hat{X} \cdot e^{-j \varphi_0} \cdot e^{j \omega_0 t} \end{equation} -\todo{Proof} - The real-valued function can be obtained by extracting the real part of the complex-valued current value. \begin{equation} x_{mc}(t) = \Re\left\{\underline{x_{mc}}(t)\right\} \end{equation} +\begin{proof}{} + \begin{equation} + \begin{split} + x_{mc}(t) &= \Re\left\{\underline{x_{mc}}(t)\right\} \\ + &= \Re\left\{\hat{X} \cdot e^{-j \varphi_0} \cdot e^{j \omega_0 t}\right\} \\ + &= \hat{X} \cdot \Re\left\{e^{j \left(\omega_0 t - \varphi_0\right)}\right\} \\ + &= \hat{X} \cdot \Re\left\{\cos \left(\omega_0 t - \varphi_0\right) + j \sin \left(\omega_0 t - \varphi_0\right)\right\} \\ + &= \hat{X} \cdot \cos \left(\omega_0 t - \varphi_0\right) \\ + \end{split} + \end{equation} +\end{proof} + +\subsection{Complex-Valued Signals} + +\begin{excursus}{Are there complex-valued, mono-chromatic signals?} + Yes, there is. + \begin{equation} + \underline{x}_{mc,e}(t) = \hat{X} \cdot e^{j \left(\omega_0 t - \varphi_0\right)} + \end{equation} + is a complex-valued, mono-chromatic signal. We will come back to it later, but not in this chapter. + + \vspace{0.5em} + Phasor representation: + \begin{equation} + \underline{x}_{mc,e}(t) = \underline{X} \cdot e^{- j \omega_0 t} + \end{equation} + With the phasor $\underline{X}$: + \begin{equation} + \underline{X} = \hat{X} \cdot e^{- j \varphi_0} = \hat{X} \angle -\varphi_0 + \end{equation} + If you use a phasor, it must be clear from the context, whether you refer to a real-valued or complex-valued, mono-chromatic signal. +\end{excursus} + \section{Periodic Signals and Fourier Series} Periodic signals $x_p(t)$ comprises a class of signals which indefinitely repeat at constant time intervals $T_0$. @@ -1514,7 +1581,86 @@ For each mono-chromatic component of the signal at an angular frequency of $\ome The values of both the amplitude response $A(\omega)$ and the phase response $\varphi(\omega)$ can be plotted over the angular frequency $\omega$. -\todo{Plots} +Let's take an example: +\begin{equation} + \underline{H}\left(j \omega\right) = \frac{3}{j \omega \tau + 1} +\end{equation} +with $\tau = \SI{0.05}{s}$. + +\begin{figure}[H] + \centering + \begin{tikzpicture} + \begin{axis}[ + height={0.25\textheight}, + width=0.8\linewidth, + scale only axis, + xlabel={$\omega \text{ in } \si{1/s}$}, + ylabel={$A(\omega) = \left|\underline{H}(j \omega)\right|$}, + %grid style={line width=.6pt, color=lightgray}, + %grid=both, + grid=none, + legend pos=north east, + axis y line=middle, + axis x line=middle, + every axis x label/.style={ + at={(ticklabel* cs:1.05)}, + anchor=north, + }, + every axis y label/.style={ + at={(ticklabel* cs:1.05)}, + anchor=east, + }, + xmin=-55, + xmax=55, + ymin=0, + ymax=3.2, + xtick={-50, -40, ..., 50}, + ytick={0, 1, ..., 3}, + ] + \addplot[blue, thick, domain=-50:50, samples=100] plot (\x, {3 * sqrt( 1 / ((0.05 * \x)^2 + 1) )}); + \end{axis} + \end{tikzpicture} + \caption{Amplitude response} +\end{figure} + +\begin{figure}[H] + \centering + \begin{tikzpicture} + \begin{axis}[ + height={0.25\textheight}, + width=0.8\linewidth, + scale only axis, + xlabel={$\omega \text{ in } \si{1/s}$}, + ylabel={$\varphi(\omega) = \arg\left(\underline{H}(j \omega)\right)$}, + %grid style={line width=.6pt, color=lightgray}, + %grid=both, + grid=none, + legend pos=north east, + axis y line=middle, + axis x line=middle, + every axis x label/.style={ + at={(ticklabel* cs:1.05)}, + anchor=north, + }, + every axis y label/.style={ + at={(ticklabel* cs:1.05)}, + anchor=east, + }, + xmin=-55, + xmax=55, + ymin=-4, + ymax=4, + xtick={-50, -40, ..., 50}, + ytick={-3.14159, -1.5708, 1.5708, 3.14159}, + yticklabels={$-\pi\hspace{0.30cm}$, $-\frac{\pi}{2}$, + $\frac{\pi}{2}$, $\pi\hspace{0.10cm}$}, + ] + \addplot[blue, thick, domain=-50:50, samples=100] plot (\x, {(2*pi/360) * atan2((3*(0.05*\x)/((0.05*\x)^2+1)), (3/((0.05*\x)^2+1)))}); + \end{axis} + \end{tikzpicture} + \caption{Phase response} +\end{figure} + \subsection{Ideal Filters} |
