summaryrefslogtreecommitdiff
path: root/chapter04
diff options
context:
space:
mode:
authorPhilipp Le <philipp-le-prviat@freenet.de>2020-05-30 01:24:13 +0200
committerPhilipp Le <philipp-le-prviat@freenet.de>2021-03-04 01:31:57 +0100
commitb03522adcd508f1c15878565e881bb8b8e37ec13 (patch)
tree8f9d19a05894226a0c26f41a0cc4a970587d221b /chapter04
parent4adcc6e2ce83cca88ef7dd78582d8b5bc5617d05 (diff)
downloaddcs-lecture-notes-b03522adcd508f1c15878565e881bb8b8e37ec13.zip
dcs-lecture-notes-b03522adcd508f1c15878565e881bb8b8e37ec13.tar.gz
dcs-lecture-notes-b03522adcd508f1c15878565e881bb8b8e37ec13.tar.bz2
WIP: Exercise 4
Diffstat (limited to 'chapter04')
-rw-r--r--chapter04/content_ch04.tex16
1 files changed, 8 insertions, 8 deletions
diff --git a/chapter04/content_ch04.tex b/chapter04/content_ch04.tex
index 6cd3635..d219f91 100644
--- a/chapter04/content_ch04.tex
+++ b/chapter04/content_ch04.tex
@@ -1871,7 +1871,7 @@ Rounding is a common model for quantization. \textit{Remark:} There are other me
The most common implementations distribute the $K$ discrete values equally between an interval of the continuous values $[\underline{\hat{X}}_L, \underline{\hat{X}}_H]$. So, the discrete values are spaced by
\begin{equation}
- \Delta \underline{\hat{X}} = \frac{\underline{\hat{X}}_H - \underline{\hat{X}}_L}{K - 1} \qquad \forall \, K \geq 1
+ \Delta \underline{\hat{X}} = \frac{\underline{\hat{X}}_H - \underline{\hat{X}}_L}{K - 1} \qquad \forall \, K \geq 2, K \in \mathbb{N}
\end{equation}
The mapping between $\underline{x}[n]$ and $\underline{x}_Q[n]$ is therefore \emph{linear}.
@@ -1906,9 +1906,9 @@ The mapping between $\underline{x}[n]$ and $\underline{x}_Q[n]$ is therefore \em
ymin=0,
ymax=9,
xtick={0, 1, ..., 8},
- xticklabels={$0$, $\hat{X}_L$, $\hat{X}_L + \Delta \hat{X}$, $\hat{X}_L + 2 \Delta \hat{X}$, $\hat{X}_L + 3 \Delta \hat{X}$, $\hat{X}_L + 4 \Delta \hat{X}$, $\hat{X}_L + 5 \Delta \hat{X}$, $\hat{X}_L + 6 \Delta \hat{X}$, $\hat{X}_H$},
+ xticklabels={$0$, $\hat{X}_L = \hat{X}_L + 0 \Delta \hat{X}$, $\hat{X}_L + 1 \Delta \hat{X}$, $\hat{X}_L + 2 \Delta \hat{X}$, $\hat{X}_L + 3 \Delta \hat{X}$, $\hat{X}_L + 4 \Delta \hat{X}$, $\hat{X}_L + 5 \Delta \hat{X}$, $\hat{X}_L + 6 \Delta \hat{X}$, $\hat{X}_H = \hat{X}_L + 7 \Delta \hat{X}$},
ytick={0, 1, ..., 8},
- yticklabels={$0$, $\hat{X}_L$, $\hat{X}_L + \Delta \hat{X}$, $\hat{X}_L + 2 \Delta \hat{X}$, $\hat{X}_L + 3 \Delta \hat{X}$, $\hat{X}_L + 4 \Delta \hat{X}$, $\hat{X}_L + 5 \Delta \hat{X}$, $\hat{X}_L + 6 \Delta \hat{X}$, $\hat{X}_H$},
+ yticklabels={$0$, $\hat{X}_L = \hat{X}_L + 0 \Delta \hat{X}$, $\hat{X}_L + 1 \Delta \hat{X}$, $\hat{X}_L + 2 \Delta \hat{X}$, $\hat{X}_L + 3 \Delta \hat{X}$, $\hat{X}_L + 4 \Delta \hat{X}$, $\hat{X}_L + 5 \Delta \hat{X}$, $\hat{X}_L + 6 \Delta \hat{X}$, $\hat{X}_H = \hat{X}_L + 7 \Delta \hat{X}$},
]
\addplot[red, thick] coordinates {(0, 1) (1.5, 1)};
\addplot[red, thick, dashed] coordinates {(1.5, 1) (1.5, 2)};
@@ -1935,13 +1935,13 @@ The mapping between $\underline{x}[n]$ and $\underline{x}_Q[n]$ is therefore \em
\draw (Cmp1.-) to[short] ++(-1cm, 0);
\draw (Cmp2.-) to[short] ++(-1cm, 0);
\draw (Cmpn.-) to[short] ++(-1cm, 0);
- \draw ([shift={(-1cm,1.5cm)}] Cmp1.-) node[vcc]{$U_{ref}$} to[R,l=$R$,-*] ([shift={(-1cm,0)}] Cmp1.-)
+ \draw ([shift={(-1cm,1.5cm)}] Cmp1.-) node[vcc]{$U_{ref}$} to[R,l=$\frac{1}{2}R$,-*] ([shift={(-1cm,0)}] Cmp1.-)
to[R,l=$R$,-*] ([shift={(-1cm,0)}] Cmp2.-)
to[short] ++(0,-1.5cm)
to[open] ([shift={(-1cm,1.5cm)}] Cmpn.-)
to[short,-*] ([shift={(-1cm,0)}] Cmpn.-)
to[short] ([shift={(-1cm,-1.5cm)}] Cmpn.-)
- to[R,l=$R$] ([shift={(-1cm,-3cm)}] Cmpn.-) node[rground]{};
+ to[R,l=$\frac{1}{2}R$] ([shift={(-1cm,-3cm)}] Cmpn.-) node[rground]{};
\draw ([shift={(-4cm,0)}] Cmp1.+) node[left]{$u_{in}(t)$} to[short,o-] (Cmp1.+);
\draw ([shift={(-2cm,0)}] Cmp1.+) to[short,*-] ([shift={(-2cm,0)}] Cmp2.+) to[short,-] (Cmp2.+);
@@ -1985,9 +1985,9 @@ The discrete values of $\underline{x}_Q[n]$ are coded as computer readable symbo
$\underline{x}_Q[n]$ & Data & Data (binary) \\
\hline
\hline
- $\hat{X}_L$ & 0 & 000 \\
+ $\hat{X}_L = \hat{X}_L + 0 \Delta \hat{X}$ & 0 & 000 \\
\hline
- $\hat{X}_L + \Delta \hat{X}$ & 1 & 001 \\
+ $\hat{X}_L + 1 \Delta \hat{X}$ & 1 & 001 \\
\hline
$\hat{X}_L + 2 \Delta \hat{X}$ & 2 & 010 \\
\hline
@@ -1999,7 +1999,7 @@ The discrete values of $\underline{x}_Q[n]$ are coded as computer readable symbo
\hline
$\hat{X}_L + 6 \Delta \hat{X}$ & 6 & 110 \\
\hline
- $\hat{X}_H$ & 7 & 111 \\
+ $\hat{X}_H = \hat{X}_L + 7 \Delta \hat{X}$ & 7 & 111 \\
\hline
\end{tabular}
\end{table}