summaryrefslogtreecommitdiff
path: root/chapter05
diff options
context:
space:
mode:
authorPhilipp Le <philipp-le-prviat@freenet.de>2020-06-14 23:23:41 +0200
committerPhilipp Le <philipp-le-prviat@freenet.de>2021-03-04 22:44:39 +0100
commit1810d825322a2d1768315bad5a1b9759785057ff (patch)
treec133a00d475a99c81996cb15b938e43650790d80 /chapter05
parent0460ef3f9231fc50ca65078594f885640399ccd5 (diff)
downloaddcs-lecture-notes-1810d825322a2d1768315bad5a1b9759785057ff.zip
dcs-lecture-notes-1810d825322a2d1768315bad5a1b9759785057ff.tar.gz
dcs-lecture-notes-1810d825322a2d1768315bad5a1b9759785057ff.tar.bz2
WIP: Chapter 7 - Spread Spectrum
Diffstat (limited to 'chapter05')
-rw-r--r--chapter05/content_ch05.tex5
1 files changed, 3 insertions, 2 deletions
diff --git a/chapter05/content_ch05.tex b/chapter05/content_ch05.tex
index 2716023..f598e65 100644
--- a/chapter05/content_ch05.tex
+++ b/chapter05/content_ch05.tex
@@ -1980,7 +1980,8 @@ All digital modulation techniques take time-discrete and value-discrete data.
\item Each instantaneous value of the time-discrete data points is prolonged to the symbol period $T_{sym}$. In fact, it becomes a rectangle function.
\item The result is a series of symbols $x_{sym}(t)$.
\end{itemize}
-\end{itemize}
+\end{itemize}%
+\nomenclature[St]{$T_{sym}$}{Symbol period, smybol duration}
The process of converting time-discrete symbols to time-continuous rectangle functions can be mathematically described by:
\begin{equation}
@@ -2581,7 +2582,7 @@ The number $K_m$ of the $K_m$-\acs{QAM} selects the number of possible symbols i
\vspace{1em}
- The transmission bandwidth is related symbol rate $f_{sym}$.
+ The transmission bandwidth is related symbol rate $f_{sym}$. \nomenclature[St]{$f_{sym}$}{Transission bandwidth}
\begin{itemize}
\item Simple approximations set the symbol rate $f_{sym}$ and transmission equal.
\item However, the exact transmission bandwidth depends on the selection of filters and the modulation technique.