summaryrefslogtreecommitdiff
path: root/chapter07/content_ch07.tex
diff options
context:
space:
mode:
authorPhilipp Le <philipp-le-prviat@freenet.de>2020-06-27 02:06:32 +0200
committerPhilipp Le <philipp-le-prviat@freenet.de>2021-03-04 22:44:39 +0100
commit89ca4a75cd646131d3a06ad1bf987c66c337ae36 (patch)
tree03925d49de6a9525db26a4f11871ff3143680dfd /chapter07/content_ch07.tex
parentc5180659145a9a1f9c5f867b6df8738e363e215f (diff)
downloaddcs-lecture-notes-89ca4a75cd646131d3a06ad1bf987c66c337ae36.zip
dcs-lecture-notes-89ca4a75cd646131d3a06ad1bf987c66c337ae36.tar.gz
dcs-lecture-notes-89ca4a75cd646131d3a06ad1bf987c66c337ae36.tar.bz2
Chapter 7 completed
Diffstat (limited to 'chapter07/content_ch07.tex')
-rw-r--r--chapter07/content_ch07.tex67
1 files changed, 61 insertions, 6 deletions
diff --git a/chapter07/content_ch07.tex b/chapter07/content_ch07.tex
index ba494d1..e436e1a 100644
--- a/chapter07/content_ch07.tex
+++ b/chapter07/content_ch07.tex
@@ -1609,7 +1609,20 @@ Drawbacks:
\end{figure}
\begin{example}{2G cell phone -- \acs{GSM}}
- \todo{GSM example}
+ The 2G cell phone system (\acf{GSM}) uses a hybrid \acs{TDMA}/\acs{FDMA} scheme.
+ \begin{itemize}
+ \item 8 users can share a frequency.
+ \begin{itemize}
+ \item The \acs{TDMA} part uses 8 time-slots of $\SI{576.92}{\micro{}s}$ length.
+ \item The 8 time-slots are arranged in a frame of $8 \cdot \SI{576.92}{\micro{}s} = \SI{4.615}{ms}$ length.
+ \item Thus, a time-slot for each user repeats every $\SI{4.615}{ms}$.
+ \item Frames are arranged in multi-frames, which themselves are arranged in super-frames, which themselves are arranged in hyper-frames.
+ \item Each time-slot (if used for data traffic) can transport $\SI{114}{bit}$. (The frame has actually $\SI{156.25}{bit}$ used for data, synchronization, control information and guard interval.)
+ \item The theoretical net data rate is $\SI{114}{bit} / \SI{4.615}{ms} = \SI{24.7}{kbit/s}$. This is sufficient to transmit voice.
+ \item The real number of users is less than 8, because some time-slots are used for control information.
+ \end{itemize}
+ \item To enable, more than 8 users, a base station uses more than one frequency. Different users can be assigned different frequencies (\acs{FDMA}).
+ \end{itemize}
\end{example}
\subsection{Code-Division Multiple Access}
@@ -1887,7 +1900,7 @@ For asynchronous \ac{DS-CDMA}, codes must have good autocorrelation properties.
\begin{itemize}
\item They shall only have one peak, so that the correlator in the receiver can determine the time-shift and synchronize itself.
\item The cross-correlation to other codes shall be close to uero.
- \item Good codes are \index{pseudo-random number code} \textbf{\acf{PN codes}}.
+ \item Good codes are \index{pseudo-random number code} \textbf{\acf{PRN} codes}.
\begin{itemize}
\item There are equal numbers of $+1$'s and $-1$'s in the code sequence.
\item The $+1$'s and $-1$'s are equally distributed.
@@ -1901,9 +1914,8 @@ Examples of such codes (without going into detail):
\item Kasami codes
\end{itemize}
-\begin{example}{3G cell phone -- \acs{UMTS}}
- Inhalt...
-\end{example}
+%\begin{example}{3G cell phone -- \acs{UMTS}}
+%\end{example}
\section{Duplexing}
@@ -1938,6 +1950,15 @@ The transmission is perfectly simultaneous.
\ac{FDD} is the \emph{duplexing method} derived from \ac{FDMA}.
+\begin{remark}
+ Like in an \ac{FDMA} system, guard bands must be inserted to mitigate inter-carrier interference.
+\end{remark}
+
+Examples:
+\begin{itemize}
+ \item 2G cell phone (\acs{GSM}) according to the \acs{ETSI} TS 145 002 Standard \cite{etsits145002}
+\end{itemize}
+
\subsection{Time-Division Duplex}
The \index{time-division duplex} \textbf{\acf{TDD}} uses two sequential time-slots in the same frequency band.
@@ -1946,10 +1967,44 @@ The \index{time-division duplex} \textbf{\acf{TDD}} uses two sequential time-slo
\item Time-slot 2 is used by device 2 for transmission and by device 1 for reception.
\item Afterwards, time-slot 1 starts again.
\end{itemize}
-In fact, this is a half-duplex method. But, the time-slots are so short that the user will not notice to switching between the time-slots. The duplexing is \emph{quasi-full-duplex}.
+In fact, this is a half-duplex method. But, the time-slots are so short that the user will not notice the switching between the time-slots. The duplexing is \emph{quasi-full-duplex}.
\ac{TDD} is the \emph{duplexing method} derived from \ac{TDMA}.
+\begin{remark}
+ Like in an \ac{TDMA} system, guard intervals must be inserted to mitigate \ac{ISI}.
+\end{remark}
+
+Examples:
+\begin{itemize}
+ \item \acf{TETRA}: trunked radio system for professional mobile radio according to the \acs{ETSI} EN 300 392 Standard \cite{en300392}
+\end{itemize}
+
+\begin{figure}[H]
+ \centering
+ \begin{tikzpicture}[
+ x={(1.5cm,0cm)},
+ y={(0cm,1cm)},
+ ]
+ \draw[-latex] (-0.5,0) -- (8.5,0) node[below right,align=left]{Time $t$};
+
+ \foreach \x in {0,2,4,6}{
+ \draw[fill=red!50,draw=black] ({(\x)},0) -- ({(\x)+1},0) -- ({(\x)+1},1) -- ({(\x)},1) -- cycle;
+ %\node[align=center] at({(\x)+0.5},0.5) {User 1 Tx\\ User 2 Rx};
+ }
+ \draw[latex-] (0.5,0.5) -- (0,3) node[above,align=center]{User 1 transmitting\\ User 2 receiving};
+
+ \foreach \x in {1,3,5,7}{
+ \draw[fill=blue!50,draw=black] ({(\x)},0) -- ({(\x)+1},0) -- ({(\x)+1},1) -- ({(\x)},1) -- cycle;
+ %\node[align=center] at({(\x)+0.5},0.5) {User 1 Rx\\ User 2 Tx};
+ }
+ \draw[latex-] (1.5,0.5) -- (2,2) node[above right,align=left]{User 1 receiving\\ User 2 transmitting};
+
+ \draw[latex-latex] (1,-0.5) -- node[midway,below,align=center]{\footnotesize Time-slot length\\ $T_{TS}$} (2,-0.5);
+ \end{tikzpicture}
+ \caption{Distribution of transmission and reception time-slots (without guard intervals) in a \acs{TDD} system}
+\end{figure}
+
\nocite{ipatov2005}