summaryrefslogtreecommitdiff
path: root/chapter07
diff options
context:
space:
mode:
authorPhilipp Le <philipp-le-prviat@freenet.de>2020-06-21 21:37:09 +0200
committerPhilipp Le <philipp-le-prviat@freenet.de>2021-03-04 22:44:39 +0100
commit0e9e437453375c61027b4989f937a9efbde9c3b4 (patch)
treec359bf4308e786ea33c2f3e0fb81f1bf7e74ac18 /chapter07
parent45939468ef41f3dd34432a6817a8db3d934e04aa (diff)
downloaddcs-lecture-notes-0e9e437453375c61027b4989f937a9efbde9c3b4.zip
dcs-lecture-notes-0e9e437453375c61027b4989f937a9efbde9c3b4.tar.gz
dcs-lecture-notes-0e9e437453375c61027b4989f937a9efbde9c3b4.tar.bz2
WIP: Chapter 7 - Multi-carrier modulation
Diffstat (limited to 'chapter07')
-rw-r--r--chapter07/content_ch07.tex106
1 files changed, 101 insertions, 5 deletions
diff --git a/chapter07/content_ch07.tex b/chapter07/content_ch07.tex
index 9ee374b..9cdc9d3 100644
--- a/chapter07/content_ch07.tex
+++ b/chapter07/content_ch07.tex
@@ -132,8 +132,6 @@ A third party who has no knowledge of neither the existence of the spread spectr
\end{itemize}
\end{itemize}
-\todo{Despreading in frequency-domain, suppression of noise and disturbances}
-
\subsection{Direct-Sequence Spread Spectrum}
A simple method for increasing the bandwidth systematically re-encoding the symbols using new symbols at a higher symbol rate.
@@ -1276,7 +1274,53 @@ The increased bandwidth makes frequency-division spread spectrum techniques unat
\nomenclature[Sf]{$\Delta f_{sc-sc}$}{Sub-carrier spacing in a multi-carrier system}
\end{itemize}
-\todo{Plot sinc-functions with zeros and its neighbouring carriers}
+\begin{figure}[H]
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.15\textheight},
+ width=0.7\linewidth,
+ scale only axis,
+ xlabel={$f$},
+ ylabel={\acs{OFDM} sub-bands},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=outer north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-0.5,
+ xmax=8.5,
+ ymin=0,
+ ymax=1.7,
+ %xtick={0,0.125,...,1},
+ %xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
+ %ytick={0},
+ ]
+ \addplot[blue,smooth,domain=0:8,samples=50] plot({\x},{(sinc(pi*(\x-3)))});
+ \addplot[blue,smooth,domain=0:8,samples=50] plot({\x},{-(sinc(pi*(\x-3)))});
+ \addplot[red,smooth,domain=0:8,samples=50] plot({\x},{(sinc(pi*(\x-4)))});
+ \addplot[red,smooth,domain=0:8,samples=50] plot({\x},{-(sinc(pi*(\x-4)))});
+ \addplot[green,smooth,domain=0:8,samples=50] plot({\x},{(sinc(pi*(\x-5)))});
+ \addplot[green,smooth,domain=0:8,samples=50] plot({\x},{-(sinc(pi*(\x-5)))});
+ \addplot[olive,smooth,domain=0:8,samples=50] plot({\x},{(sinc(pi*(\x-6)))});
+ \addplot[olive,smooth,domain=0:8,samples=50] plot({\x},{-(sinc(pi*(\x-6)))});
+
+ \draw[dashed] (axis cs:4,0) -- (axis cs:4,1.2);
+ \draw[dashed] (axis cs:5,0) -- (axis cs:5,1.2);
+ \draw[latex-latex] (axis cs:4,1.1) -- node[midway,above,align=center]{Sub-carrier spacing $\Delta f_{sc-sc}$} (axis cs:5,1.1);
+ \end{axis}
+ \end{tikzpicture}
+ \caption[The \acs{PSD} of an \acs{OFDM} multi-carrier signal]{The \acs{PSD} of an \acs{OFDM} multi-carrier signal with $M = 4$ sub-bands. The \ac{PSD} of the sub-bands is assumed to be a sinc-function (ideal rectangular symbol shape in the time-domain). With a proper selection of the sub-carrier spacing, the carriers are exactly in the zeros of all other sinc-functions. The carriers are orthogonal. The inter-carrier interference issue is mitigated.}
+\end{figure}
The total bandwidth occupied is
\begin{equation}
@@ -1299,7 +1343,33 @@ Please remember Chapter 4, when we discussed the orthogonality of the frequency
\end{itemize}
The \ac{IFFT} is, like the \ac{FFT}, implemented by an efficient algorithm.
-\todo{OFDM Tx block diagram}
+\begin{figure}[H]
+ \centering
+ \begin{adjustbox}{scale=0.6}
+ \begin{circuitikz}
+ \node[draw,block,minimum height=6cm](SP){Serial-to-\\ parallel};
+ \node[draw,block,minimum height=6cm,right=5cm of SP](IFFT){\acs{IFFT}};
+ \node[draw,block,minimum height=3cm,right=4cm of IFFT](IQ){IQ modulator};
+
+ \draw[-o] (SP.west) node[inputarrow]{} -- ++(-1cm,0) node[left,align=right]{Data stream $\vect{D}$};
+
+ \foreach \n/\y in {1/2.5, 2/1, M/-2.5}{
+ \draw ([yshift={\y cm}]SP.east) -- ++(1cm,0) node[inputarrow]{} node[draw,block,anchor=west](Mod\n){Modulator \n};
+ \draw (Mod\n.east) -- ([yshift={\y cm}]IFFT.west) node[inputarrow]{};
+ }
+ \draw[draw=none] (Mod2.south) -- node[midway]{$\vdots$} (ModM.north);
+
+ \node[above=5mm of Mod1,align=center]{\acs{BPSK}, \acs{QPSK},\\ \acs{QAM}, ...\\ modulation};
+
+ \foreach \v/\y in {I/1, Q/-1}{
+ \draw ([yshift={\y cm}]IFFT.east) to[dac,l={\v},>] ++(2cm,0) to[lowpass,>] ([yshift={\y cm}]IQ.west) node[inputarrow]{};
+ }
+
+ \draw (IQ.east) -- ++(1cm,0) node[inputarrow]{} node[right,align=left]{Multi-carrier\\ signal};
+ \end{circuitikz}
+ \end{adjustbox}
+ \caption{\acs{OFDM} modulator (transmitter) using an \acs{IFFT}}
+\end{figure}
In the receiver, the signal processing chain is reversed:
\begin{itemize}
@@ -1311,7 +1381,33 @@ In the receiver, the signal processing chain is reversed:
\item The demodulated, parallel symbols are then serialized. The data stream is reconstructed.
\end{itemize}
-\todo{OFDM Rx block diagram}
+\begin{figure}[H]
+ \centering
+ \begin{adjustbox}{scale=0.6}
+ \begin{circuitikz}
+ \node[draw,block,minimum height=3cm](IQ){IQ demodulator};
+ \node[draw,block,minimum height=6cm,right=4cm of IQ](FFT){\acs{FFT}};
+ \node[draw,block,minimum height=6cm,right=5.5cm of FFT](PS){Parallel-to-\\ serial};
+
+ \draw[-o] (IQ.west) node[inputarrow]{} -- ++(-1cm,0) node[left,align=right]{Multi-carrier\\ signal};
+
+ \foreach \v/\y in {I/1, Q/-1}{
+ \draw ([yshift={\y cm}]IQ.east) to[lowpass,>] ++(2cm,0) to[adc,l={\v},>] ([yshift={\y cm}]FFT.west) node[inputarrow]{};
+ }
+
+ \foreach \n/\y in {1/2.5, 2/1, M/-2.5}{
+ \draw ([yshift={\y cm}]FFT.east) -- ++(1cm,0) node[inputarrow]{} node[draw,block,anchor=west](Demod\n){Demodulator \n};
+ \draw (Demod\n.east) -- ([yshift={\y cm}]PS.west) node[inputarrow]{};
+ }
+ \draw[draw=none] (Demod2.south) -- node[midway]{$\vdots$} (DemodM.north);
+
+ \node[above=5mm of Demod1,align=center]{\acs{BPSK}, \acs{QPSK},\\ \acs{QAM}, ...\\ demodulation};
+
+ \draw (PS.east) -- ++(1cm,0) node[inputarrow]{} node[right,align=left]{Decoded\\ data stream\\ $\vect{\tilde{D}}$};
+ \end{circuitikz}
+ \end{adjustbox}
+ \caption{\acs{OFDM} demodulator (receiver) using an \acs{FFT}}
+\end{figure}
\section{Multiple Access}