summaryrefslogtreecommitdiff
path: root/exercise02/exercise02.tex
diff options
context:
space:
mode:
authorPhilipp Le <philipp-le-prviat@freenet.de>2020-05-03 16:13:40 +0200
committerPhilipp Le <philipp-le-prviat@freenet.de>2021-03-04 01:16:19 +0100
commit7415629cde3b98b8ebd86d99542db9ff909382dd (patch)
tree7ac7841effca08584c879a36c2f8882bea996858 /exercise02/exercise02.tex
parent7835706d922bccc9873eeee671ae119e51768daf (diff)
downloaddcs-lecture-notes-7415629cde3b98b8ebd86d99542db9ff909382dd.zip
dcs-lecture-notes-7415629cde3b98b8ebd86d99542db9ff909382dd.tar.gz
dcs-lecture-notes-7415629cde3b98b8ebd86d99542db9ff909382dd.tar.bz2
WIP: Electromagnetic spectrum
Diffstat (limited to 'exercise02/exercise02.tex')
-rw-r--r--exercise02/exercise02.tex40
1 files changed, 40 insertions, 0 deletions
diff --git a/exercise02/exercise02.tex b/exercise02/exercise02.tex
new file mode 100644
index 0000000..d8ad77a
--- /dev/null
+++ b/exercise02/exercise02.tex
@@ -0,0 +1,40 @@
+\phantomsection
+\addcontentsline{toc}{section}{Exercise 2}
+\section*{Exercise 2}
+
+\begin{question}[subtitle={Mono-chromatic Signals}]
+ Given is a mono-chromatic signal $u(t)$:
+ \begin{equation*}
+ u(t) = \SI{2}{V} \cdot \cos\left(2 \pi \cdot \SI{1}{MHz} \cdot t + \frac{\pi}{2} \right)
+ \end{equation*}
+ \begin{tasks}
+ \task
+ How much is the frequency and angular frequency? How much is the amplitude? How much is the phase?
+ \task
+ Give the phasor of the signal!
+ \task
+ An DC bias is added to the signal $u(t)$.
+ \begin{equation*}
+ u_2(t) = \SI{1}{V} + \SI{2}{V} \cdot \cos\left(2 \pi \cdot \SI{1}{MHz} \cdot t + \frac{\pi}{2} \right)
+ \end{equation*}
+ Is the resulting signal $u_2(t)$ still mono-chromatic?
+ \end{tasks}
+\end{question}
+
+\begin{solution}
+ \begin{tasks}
+ \task
+ \begin{itemize}
+ \item Frequency: \SI{1}{MHz}
+ \item Angular frequency: $2 \pi \cdot \SI{1}{MHz} = \SI{6283185.3}{s^{-1}}$
+ \item Phase: $\SI{-\pi/2}{rad}$ or \SI{-90}{\degree}
+ \item Amplitude: \SI{2}{V}
+ \end{itemize}
+ \task
+ $\underline{U} = \SI{2}{V} \cdot e^{+j \frac{\pi}{2}}$ or $\underline{U} = \SI{2}{V} \angle +\frac{\pi}{2}$
+ \task
+ No, the DC bias adds a mono-chromatic component with a frequency of $f = 0$. $u_2(t)$ is a Fourier series.
+ \end{tasks}
+\end{solution}
+
+% Exercise: Is a sine wave with DC bias mono-chromatic -> no \ No newline at end of file