diff options
| author | Philipp Le <philipp-le-prviat@freenet.de> | 2020-05-08 01:03:00 +0200 |
|---|---|---|
| committer | Philipp Le <philipp-le-prviat@freenet.de> | 2021-03-04 01:16:19 +0100 |
| commit | b08c6696547280a87871ac29ed0ff5a849637d0d (patch) | |
| tree | bd7531e0a1c2b8cc6a9f5836172ab77e4b78839b /exercise02 | |
| parent | 0ed9259fa21d69b9c77390d150a6e623e638ae75 (diff) | |
| download | dcs-lecture-notes-b08c6696547280a87871ac29ed0ff5a849637d0d.zip dcs-lecture-notes-b08c6696547280a87871ac29ed0ff5a849637d0d.tar.gz dcs-lecture-notes-b08c6696547280a87871ac29ed0ff5a849637d0d.tar.bz2 | |
WIP: Chapter 2
Diffstat (limited to 'exercise02')
| -rw-r--r-- | exercise02/exercise02.tex | 83 |
1 files changed, 82 insertions, 1 deletions
diff --git a/exercise02/exercise02.tex b/exercise02/exercise02.tex index d8ad77a..dcd06d2 100644 --- a/exercise02/exercise02.tex +++ b/exercise02/exercise02.tex @@ -37,4 +37,85 @@ \end{tasks} \end{solution} -% Exercise: Is a sine wave with DC bias mono-chromatic -> no
\ No newline at end of file +\begin{question}[subtitle={Using the Fourier transform}] + Derive the Fourier transform, without using the duality, of + \begin{tasks} + \task + Derive the Fourier transform of the time shift, without using the duality! + \begin{equation*} + \mathcal{F}\left\{\underline{f}(t - t_0)\right\} + \end{equation*} + + \task + Derive the Fourier transform of the frequency shift, without using the duality! + \begin{equation*} + \mathcal{F}\left\{e^{j \omega_0 t} \underline{f}(t)\right\} + \end{equation*} + + %\task + %Derive the Fourier transform of the frequency shift using the time shift and duality! + \end{tasks} +\end{question} + +\begin{solution} + \begin{tasks} + \task + Let + \begin{equation*} + \underline{h}(t) = \underline{f}(t - t_0) + \end{equation*} + The Fourier transform: + \begin{equation*} + \mathcal{F}\left\{\underline{h}(t)\right\} = \int\limits_{t = -\infty}^{\infty} \underline{f}(t - t_0) \cdot e^{-j \omega t} \, \mathrm{d} t + \end{equation*} + Substitute $t' = (t - t_0)$ in the integral. + \begin{equation*} + \mathcal{F}\left\{\underline{h}(t)\right\} = \int\limits_{t' = -\infty}^{\infty} \underline{f}(t') \cdot e^{-j \omega (t' + t_0)} \, \mathrm{d} t' + \end{equation*} + $e^{-j \omega t_0}$ is a constant. + \begin{equation*} + \mathcal{F}\left\{\underline{h}(t)\right\} = e^{-j \omega t_0} \underbrace{\int\limits_{t' = -\infty}^{\infty} \underline{f}(t') \cdot e^{-j \omega t'} \, \mathrm{d} t'}_{= \mathcal{F}\left\{\underline{f}(t)\right\} } + \end{equation*} + + \task + Let + \begin{equation*} + \underline{h}(t) = e^{j \omega_0 t} \underline{f}(t) + \end{equation*} + The Fourier transform: + \begin{equation*} + \mathcal{F}\left\{\underline{h}(t)\right\} = \int\limits_{t = -\infty}^{\infty} e^{j \omega_0 t} \underline{f}(t) \cdot e^{-j \omega t} \, \mathrm{d} t + \end{equation*} + Factor out $j t$ in the $e$-function. + \begin{equation*} + \mathcal{F}\left\{\underline{h}(t)\right\} = \int\limits_{t = -\infty}^{\infty} \underline{f}(t) \cdot e^{-j (\omega - \omega_0) t} \, \mathrm{d} t + \end{equation*} + Substitute $\omega' = \omega - \omega_0$ in the integral. + \begin{equation*} + \mathcal{F}\left\{\underline{h}(t)\right\} = \underbrace{\int\limits_{t = -\infty}^{\infty} \underline{f}(t) \cdot e^{-j \omega' t} \, \mathrm{d} t}_{= \mathcal{F}\left\{\underline{f}(t)\right\}} + \end{equation*} + \begin{equation*} + \mathcal{F}\left\{\underline{h}(t)\right\} = \underline{F}\left(j \omega' \right) = \underline{F}\left(j \left(\omega - \omega_0\right) \right) + \end{equation*} + +% \task +% Let +% \begin{equation*} +% \underline{g}(t) = \underline{f}(t - t_0) +% \end{equation*} +% We know from a) that +% \begin{equation*} +% \underline{G}\left(\omega \right) = \mathcal{F}\left\{\underline{g}(t)\right\} = e^{-j \omega t_0} \cdot \underline{F}\left(\omega \right) +% \end{equation*} +% Now, swap $\omega$ and $t$, swap $t_0$ and $\frac{\omega_0}{2 \pi}$, and assume both $\underline{G}$ and $\underline{F}$ are time-domain functions from now on. $\underline{F}$ now represents the original time-domain function which is shifted in frequency. +% \begin{equation*} +% \underline{G}\left(t\right) = e^{- j \frac{\omega_0}{2 \pi} t} \cdot \underline{F}\left(t \right) +% \end{equation*} +% We already know $\underline{g}$. Assume that both $\underline{g}$ and $\underline{f}$ are frequency-domain functions now. Therefore, swap $\omega$ and $t$, ans swap $t_0$ and $\frac{2 \pi}{\omega_0}$, too. +% \begin{equation*} +% \mathcal{F}\left\{\underline{G}(t)\right\} = 2 \pi \cdot \underline{g}\left(- \omega\right) = \underline{f}\left(- \omega + \omega_0\right) = \underline{f}\left(\omega - \omega_0\right) +% \end{equation*} +% +% We obtain the same result as in b). The duality works. \acs{QED} + \end{tasks} +\end{solution} |
