diff options
| author | Philipp Le <philipp-le-prviat@freenet.de> | 2020-07-07 01:00:14 +0200 |
|---|---|---|
| committer | Philipp Le <philipp-le-prviat@freenet.de> | 2021-03-04 22:44:39 +0100 |
| commit | 1c504258ab54cbca622794fec75680003c7e64ab (patch) | |
| tree | e3863553c2156e93d9c2d2162a1e3925857bf836 /exercise07/exercise07.tex | |
| parent | 419871e1c4b5d45ccd3b3ae0d4ac3d73977cadbf (diff) | |
| download | dcs-lecture-notes-1c504258ab54cbca622794fec75680003c7e64ab.zip dcs-lecture-notes-1c504258ab54cbca622794fec75680003c7e64ab.tar.gz dcs-lecture-notes-1c504258ab54cbca622794fec75680003c7e64ab.tar.bz2 | |
Completed Exercise 7
Diffstat (limited to 'exercise07/exercise07.tex')
| -rw-r--r-- | exercise07/exercise07.tex | 161 |
1 files changed, 161 insertions, 0 deletions
diff --git a/exercise07/exercise07.tex b/exercise07/exercise07.tex index a054be1..763425d 100644 --- a/exercise07/exercise07.tex +++ b/exercise07/exercise07.tex @@ -39,6 +39,167 @@ \begin{solution} \begin{tasks} + \task + The length of both codes is $N = 4$. + \begin{equation*} + \begin{split} + \left\langle \vect{C}_{4,1}, \vect{C}_{4,2} \right\rangle &= \sum\limits_{i = 0}^{N - 1} C_{4,1}[i] C_{4,2}[i] \\ + &= 1 \cdot 1 + 1 \cdot (-1) + (-1) \cdot (-1) + (-1) \cdot 1 \\ + &= 0 + \end{split} + \end{equation*} + The inner product of the codes is zero. This means that the codes are orthogonal and are suitable for CDMA. + + \task + %TODO Symbol spreading block diagram + $\vect{S} = \left[1,1,-1,-1,-1,-1,1,1\right]$ + + \task + { + \tiny + $\vect{S}$ is extended by zero. That means, $S[n] = 0 \quad \forall n < 0$ and $S[n] = 0 \quad \forall n \geq 8$. + \begin{equation*} + S[n] = \left[\ldots,0,0,0,0,\underline{1},1,-1,-1,-1,-1,1,1,0,0,0,0,\ldots\right] + \end{equation*} + \begin{remark} + The underline marks the sample at $n = 0$. + \end{remark} + + Same zero-extension is applied to the codes. + \begin{equation*} + C_{4,1}[n] = \left[\ldots,0,0,0,0,\underline{1},1,-1,-1,0,0,0,0,\ldots\right] + \end{equation*} + + Now, the cross-correlation can be applied. + \begin{equation*} + \mathrm{R}_{XY}[n] = \sum\limits_{i = -\infty}^{+\infty} X[n] \cdot Y[n+i] + \end{equation*} + + The cross-correlation effectively slides the code over the chips. + %TODO Figure + + \begin{equation*}
+ \begin{split}
+ \mathrm{R}_{SC_{4,1}}[-3] &= S[-3] \cdot C_{4,1}[0] + S[-2] \cdot C_{4,1}[1] + S[-1] \cdot C_{4,1}[2] + S[0] \cdot C_{4,1}[3] \\
+ &= (0) \cdot (1) + (0) \cdot (1) + (0) \cdot (-1) + (1) \cdot (-1) \\
+ &= -1 \\
+ \mathrm{R}_{SC_{4,1}}[-2] &= S[-2] \cdot C_{4,1}[0] + S[-1] \cdot C_{4,1}[1] + S[0] \cdot C_{4,1}[2] + S[1] \cdot C_{4,1}[3] \\
+ &= (0) \cdot (1) + (0) \cdot (1) + (1) \cdot (-1) + (1) \cdot (-1) \\
+ &= -2 \\
+ \mathrm{R}_{SC_{4,1}}[-1] &= S[-1] \cdot C_{4,1}[0] + S[0] \cdot C_{4,1}[1] + S[1] \cdot C_{4,1}[2] + S[2] \cdot C_{4,1}[3] \\
+ &= (0) \cdot (1) + (1) \cdot (1) + (1) \cdot (-1) + (-1) \cdot (-1) \\
+ &= 1 \\
+ \mathrm{R}_{SC_{4,1}}[0] &= S[0] \cdot C_{4,1}[0] + S[1] \cdot C_{4,1}[1] + S[2] \cdot C_{4,1}[2] + S[3] \cdot C_{4,1}[3] \\
+ &= (1) \cdot (1) + (1) \cdot (1) + (-1) \cdot (-1) + (-1) \cdot (-1) \\
+ &= 4 \\
+ \mathrm{R}_{SC_{4,1}}[1] &= S[1] \cdot C_{4,1}[0] + S[2] \cdot C_{4,1}[1] + S[3] \cdot C_{4,1}[2] + S[4] \cdot C_{4,1}[3] \\
+ &= (1) \cdot (1) + (-1) \cdot (1) + (-1) \cdot (-1) + (-1) \cdot (-1) \\
+ &= 2 \\
+ \mathrm{R}_{SC_{4,1}}[2] &= S[2] \cdot C_{4,1}[0] + S[3] \cdot C_{4,1}[1] + S[4] \cdot C_{4,1}[2] + S[5] \cdot C_{4,1}[3] \\
+ &= (-1) \cdot (1) + (-1) \cdot (1) + (-1) \cdot (-1) + (-1) \cdot (-1) \\
+ &= 0 \\
+ \mathrm{R}_{SC_{4,1}}[3] &= S[3] \cdot C_{4,1}[0] + S[4] \cdot C_{4,1}[1] + S[5] \cdot C_{4,1}[2] + S[6] \cdot C_{4,1}[3] \\
+ &= (-1) \cdot (1) + (-1) \cdot (1) + (-1) \cdot (-1) + (1) \cdot (-1) \\
+ &= -2 \\
+ \mathrm{R}_{SC_{4,1}}[4] &= S[4] \cdot C_{4,1}[0] + S[5] \cdot C_{4,1}[1] + S[6] \cdot C_{4,1}[2] + S[7] \cdot C_{4,1}[3] \\
+ &= (-1) \cdot (1) + (-1) \cdot (1) + (1) \cdot (-1) + (1) \cdot (-1) \\
+ &= -4 \\
+ \mathrm{R}_{SC_{4,1}}[5] &= S[5] \cdot C_{4,1}[0] + S[6] \cdot C_{4,1}[1] + S[7] \cdot C_{4,1}[2] + S[8] \cdot C_{4,1}[3] \\
+ &= (-1) \cdot (1) + (1) \cdot (1) + (1) \cdot (-1) + (0) \cdot (-1) \\
+ &= -1 \\
+ \mathrm{R}_{SC_{4,1}}[6] &= S[6] \cdot C_{4,1}[0] + S[7] \cdot C_{4,1}[1] + S[8] \cdot C_{4,1}[2] + S[9] \cdot C_{4,1}[3] \\
+ &= (1) \cdot (1) + (1) \cdot (1) + (0) \cdot (-1) + (0) \cdot (-1) \\
+ &= 2 \\
+ \mathrm{R}_{SC_{4,1}}[7] &= S[7] \cdot C_{4,1}[0] + S[8] \cdot C_{4,1}[1] + S[9] \cdot C_{4,1}[2] + S[10] \cdot C_{4,1}[3] \\
+ &= (1) \cdot (1) + (0) \cdot (1) + (0) \cdot (-1) + (0) \cdot (-1) \\
+ &= 1 \\
+ \end{split}
+ \end{equation*} + + The cross-correlation peak is at $n = 0$, indicating that $\vect{S}$ is correlated to $\vect{C}_{4,1}$ and is spread by $\vect{C}_{4,1}$. + } + + \task + { + \tiny + Zero-extension of $\vect{C}_{4,2}$. + \begin{equation*} + C_{4,2}[n] = \left[\ldots,0,0,0,0,\underline{1},-1,-1,1,0,0,0,0,\ldots\right] + \end{equation*} + + Cross-correlation: + \begin{equation*}
+ \begin{split}
+ \mathrm{R}_{SC_{4,2}}[-3] &= S[-3] \cdot C_{4,2}[0] + S[-2] \cdot C_{4,2}[1] + S[-1] \cdot C_{4,2}[2] + S[0] \cdot C_{4,2}[3] \\
+ &= (0) \cdot (1) + (0) \cdot (-1) + (0) \cdot (-1) + (1) \cdot (1) \\
+ &= 1 \\
+ \mathrm{R}_{SC_{4,2}}[-2] &= S[-2] \cdot C_{4,2}[0] + S[-1] \cdot C_{4,2}[1] + S[0] \cdot C_{4,2}[2] + S[1] \cdot C_{4,2}[3] \\
+ &= (0) \cdot (1) + (0) \cdot (-1) + (1) \cdot (-1) + (1) \cdot (1) \\
+ &= 0 \\
+ \mathrm{R}_{SC_{4,2}}[-1] &= S[-1] \cdot C_{4,2}[0] + S[0] \cdot C_{4,2}[1] + S[1] \cdot C_{4,2}[2] + S[2] \cdot C_{4,2}[3] \\
+ &= (0) \cdot (1) + (1) \cdot (-1) + (1) \cdot (-1) + (-1) \cdot (1) \\
+ &= -3 \\
+ \mathrm{R}_{SC_{4,2}}[0] &= S[0] \cdot C_{4,2}[0] + S[1] \cdot C_{4,2}[1] + S[2] \cdot C_{4,2}[2] + S[3] \cdot C_{4,2}[3] \\
+ &= (1) \cdot (1) + (1) \cdot (-1) + (-1) \cdot (-1) + (-1) \cdot (1) \\
+ &= 0 \\
+ \mathrm{R}_{SC_{4,2}}[1] &= S[1] \cdot C_{4,2}[0] + S[2] \cdot C_{4,2}[1] + S[3] \cdot C_{4,2}[2] + S[4] \cdot C_{4,2}[3] \\
+ &= (1) \cdot (1) + (-1) \cdot (-1) + (-1) \cdot (-1) + (-1) \cdot (1) \\
+ &= 2 \\
+ \mathrm{R}_{SC_{4,2}}[2] &= S[2] \cdot C_{4,2}[0] + S[3] \cdot C_{4,2}[1] + S[4] \cdot C_{4,2}[2] + S[5] \cdot C_{4,2}[3] \\
+ &= (-1) \cdot (1) + (-1) \cdot (-1) + (-1) \cdot (-1) + (-1) \cdot (1) \\
+ &= 0 \\
+ \mathrm{R}_{SC_{4,2}}[3] &= S[3] \cdot C_{4,2}[0] + S[4] \cdot C_{4,2}[1] + S[5] \cdot C_{4,2}[2] + S[6] \cdot C_{4,2}[3] \\
+ &= (-1) \cdot (1) + (-1) \cdot (-1) + (-1) \cdot (-1) + (1) \cdot (1) \\
+ &= 2 \\
+ \mathrm{R}_{SC_{4,2}}[4] &= S[4] \cdot C_{4,2}[0] + S[5] \cdot C_{4,2}[1] + S[6] \cdot C_{4,2}[2] + S[7] \cdot C_{4,2}[3] \\
+ &= (-1) \cdot (1) + (-1) \cdot (-1) + (1) \cdot (-1) + (1) \cdot (1) \\
+ &= 0 \\
+ \mathrm{R}_{SC_{4,2}}[5] &= S[5] \cdot C_{4,2}[0] + S[6] \cdot C_{4,2}[1] + S[7] \cdot C_{4,2}[2] + S[8] \cdot C_{4,2}[3] \\
+ &= (-1) \cdot (1) + (1) \cdot (-1) + (1) \cdot (-1) + (0) \cdot (1) \\
+ &= -3 \\
+ \mathrm{R}_{SC_{4,2}}[6] &= S[6] \cdot C_{4,2}[0] + S[7] \cdot C_{4,2}[1] + S[8] \cdot C_{4,2}[2] + S[9] \cdot C_{4,2}[3] \\
+ &= (1) \cdot (1) + (1) \cdot (-1) + (0) \cdot (-1) + (0) \cdot (1) \\
+ &= 0 \\
+ \mathrm{R}_{SC_{4,2}}[7] &= S[7] \cdot C_{4,2}[0] + S[8] \cdot C_{4,2}[1] + S[9] \cdot C_{4,2}[2] + S[10] \cdot C_{4,2}[3] \\
+ &= (1) \cdot (1) + (0) \cdot (-1) + (0) \cdot (-1) + (0) \cdot (1) \\
+ &= 1 \\
+ \end{split}
+ \end{equation*} + + The cross-correlation has no clear peaks, indicating that $\vect{S}$ and $\vect{C}_{4,2}$ are uncorrelated. + } + + \task + { + \tiny + Autocorrelation is the cross-correlation of the (zero-extended) code $\vect{C}_{4,2}$ with itself. + + \begin{equation*}
+ \begin{split}
+ \mathrm{R}_{C_{4,2}C_{4,2}}[-3] &= C_{4,2}[-3] \cdot C_{4,2}[0] + C_{4,2}[-2] \cdot C_{4,2}[1] + C_{4,2}[-1] \cdot C_{4,2}[2] + C_{4,2}[0] \cdot C_{4,2}[3] \\
+ &= (0) \cdot (1) + (0) \cdot (-1) + (0) \cdot (-1) + (1) \cdot (1) \\
+ &= 1 \\
+ \mathrm{R}_{C_{4,2}C_{4,2}}[-2] &= C_{4,2}[-2] \cdot C_{4,2}[0] + C_{4,2}[-1] \cdot C_{4,2}[1] + C_{4,2}[0] \cdot C_{4,2}[2] + C_{4,2}[1] \cdot C_{4,2}[3] \\
+ &= (0) \cdot (1) + (0) \cdot (-1) + (1) \cdot (-1) + (-1) \cdot (1) \\
+ &= -2 \\
+ \mathrm{R}_{C_{4,2}C_{4,2}}[-1] &= C_{4,2}[-1] \cdot C_{4,2}[0] + C_{4,2}[0] \cdot C_{4,2}[1] + C_{4,2}[1] \cdot C_{4,2}[2] + C_{4,2}[2] \cdot C_{4,2}[3] \\
+ &= (0) \cdot (1) + (1) \cdot (-1) + (-1) \cdot (-1) + (-1) \cdot (1) \\
+ &= -1 \\
+ \mathrm{R}_{C_{4,2}C_{4,2}}[0] &= C_{4,2}[0] \cdot C_{4,2}[0] + C_{4,2}[1] \cdot C_{4,2}[1] + C_{4,2}[2] \cdot C_{4,2}[2] + C_{4,2}[3] \cdot C_{4,2}[3] \\
+ &= (1) \cdot (1) + (-1) \cdot (-1) + (-1) \cdot (-1) + (1) \cdot (1) \\
+ &= 4 \\
+ \mathrm{R}_{C_{4,2}C_{4,2}}[1] &= C_{4,2}[1] \cdot C_{4,2}[0] + C_{4,2}[2] \cdot C_{4,2}[1] + C_{4,2}[3] \cdot C_{4,2}[2] + C_{4,2}[4] \cdot C_{4,2}[3] \\
+ &= (-1) \cdot (1) + (-1) \cdot (-1) + (1) \cdot (-1) + (0) \cdot (1) \\
+ &= -1 \\
+ \mathrm{R}_{C_{4,2}C_{4,2}}[2] &= C_{4,2}[2] \cdot C_{4,2}[0] + C_{4,2}[3] \cdot C_{4,2}[1] + C_{4,2}[4] \cdot C_{4,2}[2] + C_{4,2}[5] \cdot C_{4,2}[3] \\
+ &= (-1) \cdot (1) + (1) \cdot (-1) + (0) \cdot (-1) + (0) \cdot (1) \\
+ &= -2 \\
+ \mathrm{R}_{C_{4,2}C_{4,2}}[3] &= C_{4,2}[3] \cdot C_{4,2}[0] + C_{4,2}[4] \cdot C_{4,2}[1] + C_{4,2}[5] \cdot C_{4,2}[2] + C_{4,2}[6] \cdot C_{4,2}[3] \\
+ &= (1) \cdot (1) + (0) \cdot (-1) + (0) \cdot (-1) + (0) \cdot (1) \\
+ &= 1 \\
+ \end{split}
+ \end{equation*} + } \end{tasks} \end{solution} |
