summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--chapter04/content_ch04.tex200
1 files changed, 124 insertions, 76 deletions
diff --git a/chapter04/content_ch04.tex b/chapter04/content_ch04.tex
index 6e678d8..c40e76c 100644
--- a/chapter04/content_ch04.tex
+++ b/chapter04/content_ch04.tex
@@ -13,12 +13,12 @@
height={0.25\textheight},
width=0.6\linewidth,
scale only axis,
- xlabel={$t$ or $n$, respectively},
+ xlabel={$t$},
ylabel={$x$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
- legend pos=north east,
+ legend pos=north west,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
@@ -34,9 +34,14 @@
%ymin=0,
%ymax=3,
%xtick={0, 1, ..., 6},
- %ytick={0, 0.5, ..., 2.5}
+ %ytick={0, 0.5, ..., 2.5},
+ xmin=0,
+ xmax=6.5,
+ xtick={0, 1, ..., 6},
+ xticklabels={$0$, $T_S$, $2 T_S$, $3 T_S$, $4 T_S$, $5 T_S$, $6 T_S$},
]
\addplot[smooth, blue, dashed] coordinates {(0, 1.1) (1, 1.8) (2, 2.1) (3, 1.0) (4, 0.8) (5, 1.7) (6, 2.4)};
+ \addlegendentry{$\underline{x}{t}$};
\addplot[red, thick] coordinates {(0, 0) (0, 1.1)};
\addplot[red, thick] coordinates {(1, 0) (1, 1.8)};
\addplot[red, thick] coordinates {(2, 0) (2, 2.1)};
@@ -45,6 +50,7 @@
\addplot[red, thick] coordinates {(5, 0) (5, 1.7)};
\addplot[red, thick] coordinates {(6, 0) (6, 2.4)};
\addplot[only marks, red, thick, mark=o] coordinates {(0, 1.1) (1, 1.8) (2, 2.1) (3, 1.0) (4, 0.8) (5, 1.7) (6, 2.4)};
+ \addlegendentry{$\underline{x}_S{t}$};
\end{axis}
\end{tikzpicture}
\caption{Sampling of a time-continuous signal}
@@ -72,78 +78,109 @@ Sampling parameters:
\begin{equation}
f_S = \frac{1}{T_S}
\end{equation}
+ \item The \index{sampling angular frequency} \textbf{sampling angular frequency} $\omega_S$.
+ \begin{equation}
+ \omega_S = \frac{2 \pi}{T_S}
+ \end{equation}
\end{itemize}
Ideal sampling:
\begin{itemize}
- \item The samples are truly equidistant. The sampling period $T_S$ is constant and is \underline{not} subject to fluctuations.
- \item The sample is the value of the original signal $\underline{x}(t)$ at \underline{exactly} the time instance where has been taken.
+ \item The samples are ideally equidistant. The sampling period $T_S$ is constant and is \underline{not} subject to fluctuations.
+ \item The sample has the value of the original signal $\underline{x}(t)$ at \underline{exactly} the time instance where has been taken.
\end{itemize}
Some corollaries can be deducted from these two points:
\begin{itemize}
- \item The sampled signal at the discrete time $n$ is the value of the original signal at time $t = n T_S$: $\underline{x}[n] = \underline{x}\left(n T_S\right)$
- \item The sampled signal consists of a chain of indefinitely narrow pulses.
+ \item The sampled signal $\underline{x}_S(n T_S)$ at the discrete time $n$ is the value of the original signal at time $t = n T_S$.
+ \begin{equation}
+ \underline{x}[n] = \underline{x}\left(n T_S\right)
+ \end{equation}
+ \item The sampled signal $\underline{x}_S(t)$ consists of a chain of equidistant, indefinitely narrow pulses.
\begin{itemize}
\item The pulses are equidistant with $T_S$.
\item The pulses have the value of $\underline{x}\left(n T_S\right)$ as their amplitudes.
+ \item The value of the sampled signal is zero in between the pulses.
+ \begin{equation}
+ \underline{x}_S(t) = \begin{cases}
+ \underline{x}\left(n T_S\right) & \quad \forall \; t = n T_S, n \in \mathbb{Z}, \\
+ 0 & \quad \forall \; n T_S < t < \left(n+1\right) T_S, n \in \mathbb{Z}.
+ \end{cases}
+ \end{equation}
\end{itemize}
\end{itemize}
-\begin{proof}{}
- We know already indefinitely narrow pulses. They are Dirac delta functions $\delta\left(t - n T_S\right)$.
-
- Taking out \underline{exactly one} sample out of $\underline{x}(t)$ is a convolution of $\underline{x}(t)$ with $\delta(t)$.
- \begin{equation}
- \begin{split}
- \underline{x}[n] &= \underline{x}(t) * \delta(t) \\
- &= \int\limits_{-\infty}^{\infty} \underline{x}(t) \cdot \delta\left(n T_S - t\right) \, \mathrm{d} t \\
- & \text{$\delta(t)$ is symmetric} \\
- &= \int\limits_{-\infty}^{\infty} \underline{x}(t) \cdot \delta\left(t - n T_S\right) \, \mathrm{d} t \\
- &= \underline{x}\left(n T_S\right)
- \end{split}
- \label{eq:ch04:one_sample}
- \end{equation}
-
- \begin{figure}[H]
- \centering
- \begin{tikzpicture}
- \begin{axis}[
- height={0.25\textheight},
- width=0.6\linewidth,
- scale only axis,
- xlabel={$t$ or $n$, respectively},
- ylabel={$x$},
- %grid style={line width=.6pt, color=lightgray},
- %grid=both,
- grid=none,
- legend pos=north east,
- axis y line=middle,
- axis x line=middle,
- every axis x label/.style={
- at={(ticklabel* cs:1.05)},
- anchor=north,
- },
- every axis y label/.style={
- at={(ticklabel* cs:1.05)},
- anchor=east,
- },
- %xmin=0,
- %xmax=7,
- %ymin=0,
- %ymax=3,
- %xtick={0, 1, ..., 6},
- %ytick={0, 0.5, ..., 2.5}
- ]
- \addplot[smooth, blue, dashed] coordinates {(0, 1.1) (1, 1.8) (2, 2.1) (3, 1.0) (4, 0.8) (5, 1.7) (6, 2.4)};
- \addplot[red, thick] coordinates {(2, 0) (2, 2.1)};
- \addplot[only marks, red, thick, mark=o] coordinates {(2, 2.1)};
- \end{axis}
- \end{tikzpicture}
- \caption{Taking out exactly one sample out of $\underline{x}(t)$}
- \end{figure}
-\end{proof}
+We know already indefinitely narrow pulses. They are Dirac delta functions $\delta\left(t - n T_S\right)$.
+
+Taking out \underline{exactly one} sample out of $\underline{x}(t)$ is a multiplication of $\underline{x}(t)$ with $\delta\left(t - n T_S\right)$.
+\begin{equation}
+ \underline{x}_{S,n}(t) = \underline{x}(t) \delta\left(t - n T_S\right)
+ \label{eq:ch4:one_sample_1}
+\end{equation}
+The Dirac delta function is zero expect at $t = n T_S$. So, \eqref{eq:ch4:one_sample_1} can be further reduced.
+\begin{equation}
+ \underline{x}_{S,n}(t) = \underline{x}(n T_S) \delta\left(t - n T_S\right)
+ \label{eq:ch4:one_sample_2}
+\end{equation}
+
+\begin{figure}[H]
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.25\textheight},
+ width=0.6\linewidth,
+ scale only axis,
+ xlabel={$t$},
+ ylabel={$x$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north west,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ %xmin=0,
+ %xmax=7,
+ %ymin=0,
+ %ymax=3,
+ %xtick={0, 1, ..., 6},
+ %ytick={0, 0.5, ..., 2.5},
+ xmin=0,
+ xmax=6.5,
+ xtick={0, 1, ..., 6},
+ xticklabels={$0$, $T_S$, $2 T_S$, $3 T_S$, $4 T_S$, $5 T_S$, $6 T_S$},
+ ]
+ \addplot[smooth, blue, dashed] coordinates {(0, 1.1) (1, 1.8) (2, 2.1) (3, 1.0) (4, 0.8) (5, 1.7) (6, 2.4)};
+ \addlegendentry{$\underline{x}{t}$};
+ \addplot[red, thick] coordinates {(2, 0) (2, 2.1)};
+ \addplot[only marks, red, thick, mark=o] coordinates {(2, 2.1)};
+ \addlegendentry{$\underline{x}_{S,n}{t}$};
+ \end{axis}
+ \end{tikzpicture}
+ \caption[Taking out exactly one sample out of $\underline{x}(t)$]{Taking out exactly one sample out of $\underline{x}(t)$ -- in this example $n = 2$.}
+\end{figure}
+
+To obtain the sampled signal, the sampling process $\underline{x}_{S,n}(t)$ \eqref{eq:ch4:one_sample_1} needs to be repeated for each $n \in \mathbb{Z}$. All individual sample processes $\underline{x}_{S,n}(t)$ are then superimposed to form the complete sampled signal $\underline{x}_S(t)$.
+\begin{equation}
+ \begin{split}
+ \underline{x}_S(t) &= \sum\limits_{n = -\infty}^{\infty} \underline{x}_{S,n}(t) \\
+ &= \sum\limits_{n = -\infty}^{\infty} \underline{x}\left(t\right) \delta\left(t - n T_S\right) \\
+ &= \underline{x}\left(t\right) \cdot \underbrace{\sum\limits_{n = -\infty}^{\infty} \delta\left(t - n T_S\right)}_{= \Sha_{T_S}(t)}
+ \end{split}
+\end{equation}
+
+The sum of Dirac delta functions
+\begin{itemize}
+ \item forms a series of equidistant pulses repeating at a period of $T_S$,
+ \item is called \index{Dirac comb} \textbf{Dirac comb} $\Sha_{T_S}(t)$ or \index{impulse train} \textbf{impulse train}.
+\end{itemize}
-These Dirac pulses are repeated with a period of $T_S$ and form a \index{Dirac comb} \textbf{Dirac comb} $\Sha_{T_S}(t)$ -- also called \index{impulse train} \textbf{impulse train}.
\begin{equation}
\Sha_{T_S}(t) = \sum\limits_{n = -\infty}^{\infty} \delta\left(t - n T_S\right)
\end{equation}
@@ -191,10 +228,23 @@ These Dirac pulses are repeated with a period of $T_S$ and form a \index{Dirac c
A \index{sampler} \textbf{sampler} is a system which
\begin{itemize}
\item applies the Dirac comb $\Sha_{T_S}(t)$
- \item to a time-continuous signal $\underline{x}(t)$ and
- \item output a series of equidistant pulses $\underline{x}_S(t)$.
+ \item to a time-continuous signal $\underline{x}(t)$ (multiplication) and
+ \item outputs a series of equidistant pulses $\underline{x}_S(t)$.
\end{itemize}
-The chain of pulses can then be reinterpreted as a time-discrete signal $\underline{x}[n]$.
+\begin{equation}
+ \begin{split}
+ \underline{x}_S(t) &= \underline{x}(t) \cdot \Sha_{T_S}(t) \\
+ &= \sum\limits_{n = -\infty}^{\infty} \underline{x}\left(t\right) \delta\left(t - n T_S\right) \\
+ &= \sum\limits_{n = -\infty}^{\infty} \underline{x}\left(n T_S\right) \delta\left(t - n T_S\right)
+ \end{split}
+ \label{eq:ch04:ideal_sampling}
+\end{equation}
+
+The sampled signal $\underline{x}_S(t)$ is a chain of pulses (red signal in Figure \ref{fig:ch04:sampling_of_signal}). The chain of pulses can then be reinterpreted as a time-discrete signal $\underline{x}[n]$. The value of $\underline{x}[n]$ is:
+\begin{equation}
+ \underline{x}[n] = \underline{x}_S\left(n T_S\right) = \underline{x}\left(n T_S\right) \qquad \forall \; n \in \mathbb{Z}
+ \label{eq:ch04:sample_value}
+\end{equation}
\begin{figure}[H]
\centering
@@ -215,13 +265,6 @@ The chain of pulses can then be reinterpreted as a time-discrete signal $\underl
\caption{An abstract view on sampling}
\end{figure}
-The ideal sampler multiplies the time-continuous signal $\underline{x}(t)$ with the Dirac comb $\Sha_{T_S}(t)$ in order to obtain the sampled signal $\underline{x}_S(t)$.
-\begin{equation}
- \underline{x}_S(t) = \underline{x}(t) \cdot \Sha_{T_S}(t) = \sum\limits_{n = -\infty}^{\infty} \underline{x}\left(n T_S\right) \delta\left(t - n T_S\right)
- \label{eq:ch04:ideal_sampling}
-\end{equation}
-In Figure \ref{fig:ch04:sampling_of_signal}, the chain of pulses is red.
-
\begin{fact}
The act of sampling is irreversible.
\end{fact}
@@ -230,18 +273,25 @@ There is a way to obtain the sampled signal:
\begin{equation*}
\underline{x}_S(t) = \mathrm{Sampling} \left(\underline{x}(t)\right)
\end{equation*}
-But there is no way back to reconstruct the original signal. $\mathrm{Sampling}^{-1} \left(\underline{x}_S(t)\right)$ does not exist.
+But there is generally no way back to reconstruct the original signal. $\mathrm{Sampling}^{-1} \left(\underline{x}_S(t)\right)$ does not exist.
+\begin{equation*}
+ \underline{x}(t) \neq \underbrace{\mathrm{Sampling}^{-1}}_{\text{Does not exist}} \left(\underline{x}_S(t)\right)
+\end{equation*}
+
+Sampling is always lossy in general.
+
+\subsection{Sampling Theorem and Aliasing}
-Sampling is always lossy.
\subsection{Discrete-Time Fourier Transform}
% TODO
-Using \eqref{eq:ch04:ideal_sampling} and \eqref{eq:ch04:one_sample}, a expression depending on the time-discrete signal $\underline{x}[n]$ can be formulated:
+Using \eqref{eq:ch04:ideal_sampling} and \eqref{eq:ch04:sample_value}, a expression depending on the time-discrete signal $\underline{x}[n]$ can be formulated:
\begin{equation}
\underline{x}_S(t) = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot \delta(t - n T_S)
\end{equation}
+The Fourier transform of the sampled signal $\underline{x}_S(t)$ is:
\begin{equation}
\begin{split}
\underline{X}_S \left(j \omega\right) &= \mathcal{F} \left\{\underline{x}_S(t)\right\} \\
@@ -257,8 +307,6 @@ Redefining $\phi = T_S \omega$:
\underline{X}_S \left(j \omega\right) = \underline{X} \left(e^{j \phi}\right) = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{-j \phi n}
\end{equation}
-\subsection{Sampling Theorem and Aliasing}
-
\subsection{Discrete Fourier Transform}
\section{Analogies Of Time-Continuous and Time-Discrete Signals and Systems}