summaryrefslogtreecommitdiff
path: root/chapter04/content_ch04.tex
blob: 6e678d8a3740932270706f06b17ba4e9895e318f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
\chapter{Sampling and Time-Discrete Signals and Systems}

\begin{refsection}

\section{Time-Discrete Signals}

\subsection{Ideal Sampling}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.6\linewidth,
			scale only axis,
			xlabel={$t$ or $n$, respectively},
			ylabel={$x$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			%xmin=0,
			%xmax=7,
			%ymin=0,
			%ymax=3,
			%xtick={0, 1, ..., 6},
			%ytick={0, 0.5, ..., 2.5}
		]
			\addplot[smooth, blue, dashed] coordinates {(0, 1.1) (1, 1.8) (2, 2.1) (3, 1.0) (4, 0.8) (5, 1.7) (6, 2.4)};
			\addplot[red, thick] coordinates {(0, 0) (0, 1.1)};
			\addplot[red, thick] coordinates {(1, 0) (1, 1.8)};
			\addplot[red, thick] coordinates {(2, 0) (2, 2.1)};
			\addplot[red, thick] coordinates {(3, 0) (3, 1.0)};
			\addplot[red, thick] coordinates {(4, 0) (4, 0.8)};
			\addplot[red, thick] coordinates {(5, 0) (5, 1.7)};
			\addplot[red, thick] coordinates {(6, 0) (6, 2.4)};
			\addplot[only marks, red, thick, mark=o] coordinates {(0, 1.1) (1, 1.8) (2, 2.1) (3, 1.0) (4, 0.8) (5, 1.7) (6, 2.4)};
		\end{axis}
	\end{tikzpicture}
	\caption{Sampling of a time-continuous signal}
	\label{fig:ch04:sampling_of_signal}
\end{figure}

Sampling:
\begin{itemize}
	\item Sampling is converting a time-continuous signal $\underline{x}(t)$ to a time-discrete signal $\underline{x}[n]$.
	\item Samples are periodically taken out of the original signal.
\end{itemize}

Nomenclature:
\begin{itemize}
	\item The original time-continuous signal is $\underline{x}(t)$. The continuous time variable $t \in \mathbb{R}$ is a continuous real number.
	\item The sampled signal is $\underline{x}[n]$. The discrete time variable $n \in \mathbb{Z}$ is a (discrete) integer number.
	\item Round parenthesis is used for time-continuous signals. Square parenthesis is used for time-discrete signals.
\end{itemize}

Sampling parameters:
\begin{itemize}
	\item The time instances, at which the samples are taken out, are equidistant.
	\item The period between the samples is the \index{sampling period} \textbf{sampling period} $T_S$.
	\item The inverse of the sampling period is the \index{sampling rate} \textbf{sampling rate} $f_S$.
	\begin{equation}
		f_S = \frac{1}{T_S}
	\end{equation}
\end{itemize}

Ideal sampling:
\begin{itemize}
	\item The samples are truly equidistant. The sampling period $T_S$ is constant and is \underline{not} subject to fluctuations.
	\item The sample is the value of the original signal $\underline{x}(t)$ at \underline{exactly} the time instance where has been taken.
\end{itemize}
Some corollaries can be deducted from these two points:
\begin{itemize}
	\item The sampled signal at the discrete time $n$ is the value of the original signal at time $t = n T_S$: $\underline{x}[n] = \underline{x}\left(n T_S\right)$
	\item The sampled signal consists of a chain of indefinitely narrow pulses.
	\begin{itemize}
		\item The pulses are equidistant with $T_S$.
		\item The pulses have the value of $\underline{x}\left(n T_S\right)$ as their amplitudes.
	\end{itemize}
\end{itemize}

\begin{proof}{}
	We know already indefinitely narrow pulses. They are Dirac delta functions $\delta\left(t - n T_S\right)$.
	
	Taking out \underline{exactly one} sample out of $\underline{x}(t)$ is a convolution of $\underline{x}(t)$ with $\delta(t)$.
	\begin{equation}
		\begin{split}
			\underline{x}[n] &= \underline{x}(t) * \delta(t) \\
			 &= \int\limits_{-\infty}^{\infty} \underline{x}(t) \cdot \delta\left(n T_S - t\right) \, \mathrm{d} t \\
			 & \text{$\delta(t)$ is symmetric} \\
			 &= \int\limits_{-\infty}^{\infty} \underline{x}(t) \cdot \delta\left(t - n T_S\right) \, \mathrm{d} t \\
			 &= \underline{x}\left(n T_S\right)
		\end{split}
		\label{eq:ch04:one_sample}
	\end{equation}
	
	\begin{figure}[H]
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.25\textheight},
				width=0.6\linewidth,
				scale only axis,
				xlabel={$t$ or $n$, respectively},
				ylabel={$x$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				%xmin=0,
				%xmax=7,
				%ymin=0,
				%ymax=3,
				%xtick={0, 1, ..., 6},
				%ytick={0, 0.5, ..., 2.5}
			]
				\addplot[smooth, blue, dashed] coordinates {(0, 1.1) (1, 1.8) (2, 2.1) (3, 1.0) (4, 0.8) (5, 1.7) (6, 2.4)};
				\addplot[red, thick] coordinates {(2, 0) (2, 2.1)};
				\addplot[only marks, red, thick, mark=o] coordinates {(2, 2.1)};
			\end{axis}
		\end{tikzpicture}
		\caption{Taking out exactly one sample out of $\underline{x}(t)$}
	\end{figure}
\end{proof}

These Dirac pulses are repeated with a period of $T_S$ and form a \index{Dirac comb} \textbf{Dirac comb} $\Sha_{T_S}(t)$ -- also called \index{impulse train} \textbf{impulse train}.
\begin{equation}
	\Sha_{T_S}(t) = \sum\limits_{n = -\infty}^{\infty} \delta\left(t - n T_S\right)
\end{equation}
\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.15\textheight},
			width=0.9\linewidth,
			scale only axis,
			xlabel={$t$},
			ylabel={$\Sha_{T_S}(t)$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-5.5,
			xmax=5.5,
			ymin=0,
			ymax=1.2,
			xtick={-5, -4, ..., 5},
			xticklabels={$-5 T_S$, $-4 T_S$, $-3 T_S$, $-2 T_S$, $- T_S$, $0$, $T_S$, $2 T_S$, $3 T_S$, $4 T_S$, $5 T_S$},
			ytick={0},
		]
			\pgfplotsinvokeforeach{-5, -4, ..., 5}{
				\draw[-latex, blue, very thick] (axis cs:#1,0) -- (axis cs:#1,1);
				%\addplot[blue, very thick] coordinates {(#1, 0) (#1, 1)};
				%\addplot[only marks, blue, thick, mark=triangle] coordinates {(#1, 1)};
			}
		\end{axis}
	\end{tikzpicture}
	\caption{Dirac comb}
\end{figure}

A \index{sampler} \textbf{sampler} is a system which
\begin{itemize}
	\item applies the Dirac comb $\Sha_{T_S}(t)$
	\item to a time-continuous signal $\underline{x}(t)$ and
	\item output a series of equidistant pulses $\underline{x}_S(t)$.
\end{itemize}
The chain of pulses can then be reinterpreted as a time-discrete signal $\underline{x}[n]$.

\begin{figure}[H]
	\centering
	\begin{adjustbox}{scale=0.8}
		\begin{tikzpicture}
			\node[draw, block] (Sampler) {Ideal sampler};
			\node[draw, block, right=3cm of Sampler] (ReInterp) {Reinterpret as\\ time-discrete signal};
			
			\draw[<-o] (Sampler.west) -- ++(-1.7cm, 0) node[above, align=center]{Time-continuous\\ signal $\underline{x}(t)$};
			\draw[->] (Sampler.east) -- (ReInterp.west) node[midway, above, align=center]{Series of pulses\\ $\underline{x}_S(t)$};
			\draw[<-] (Sampler.south) -- ++(0, -0.75cm) node[below, align=center]{Dirac comb\\ $\Sha_{T_S}(t)$};
			\draw[->] (ReInterp.east) -- ++(1.5cm, 0) node[above, align=center]{Time-discrete\\ signal $\underline{x}[n]$};
			
			\draw[dashed] (ReInterp.north) -- ++(0, 2cm) node[below left, align=right]{Time-continuous\\ domain} node[below right, align=left]{Time-discrete\\ domain};
			\draw[dashed] (ReInterp.south) -- ++(0, -1cm);
		\end{tikzpicture}
	\end{adjustbox}
	\caption{An abstract view on sampling}
\end{figure}

The ideal sampler multiplies the time-continuous signal $\underline{x}(t)$ with the Dirac comb $\Sha_{T_S}(t)$ in order to obtain the sampled signal $\underline{x}_S(t)$.
\begin{equation}
	\underline{x}_S(t) = \underline{x}(t) \cdot \Sha_{T_S}(t) = \sum\limits_{n = -\infty}^{\infty} \underline{x}\left(n T_S\right) \delta\left(t - n T_S\right)
	\label{eq:ch04:ideal_sampling}
\end{equation}
In Figure \ref{fig:ch04:sampling_of_signal}, the chain of pulses is red.

\begin{fact}
	The act of sampling is irreversible.
\end{fact}
	
There is a way to obtain the sampled signal:
\begin{equation*}
	\underline{x}_S(t) = \mathrm{Sampling} \left(\underline{x}(t)\right)
\end{equation*}
But there is no way back to reconstruct the original signal. $\mathrm{Sampling}^{-1} \left(\underline{x}_S(t)\right)$ does not exist.

Sampling is always lossy.

\subsection{Discrete-Time Fourier Transform}

% TODO
Using \eqref{eq:ch04:ideal_sampling} and \eqref{eq:ch04:one_sample}, a expression depending on the time-discrete signal $\underline{x}[n]$ can be formulated:
\begin{equation}
	\underline{x}_S(t) = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot \delta(t - n T_S)
\end{equation}

\begin{equation}
	\begin{split}
		\underline{X}_S \left(j \omega\right) &= \mathcal{F} \left\{\underline{x}_S(t)\right\} \\
		 &= \mathcal{F} \left\{\sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot \delta(t - n T_S)\right\} \\
		 &= \int\limits_{t = -\infty}^{\infty} \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot \delta(t - n T_S) \cdot e^{-j \omega t} \, \mathrm{d} t \\
		 &= \sum\limits_{n = -\infty}^{\infty} \int\limits_{t = -\infty}^{\infty} \underline{x}[n] \cdot \delta(t - n T_S) \cdot e^{-j \omega t} \, \mathrm{d} t \\
		 &= \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{-j \omega n T_S}
	\end{split}
\end{equation}

Redefining $\phi = T_S \omega$:
\begin{equation}
	\underline{X}_S \left(j \omega\right) = \underline{X} \left(e^{j \phi}\right) = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{-j \phi n}
\end{equation}

\subsection{Sampling Theorem and Aliasing}

\subsection{Discrete Fourier Transform}

\section{Analogies Of Time-Continuous and Time-Discrete Signals and Systems}

\subsection{Transforms}

\begin{table}[H]
	\centering
	\begin{tabular}{|p{0.3\linewidth}||p{0.3\linewidth}|p{0.3\linewidth}|}
		\hline
		{} & \textbf{Frequency-Continuous Domain} & \textbf{Frequency-Discrete Domain} \\
		\hline
		\hline
		\textbf{Time-Continuous Domain} & Fourier transform & Fourier series \\
		\hline
		\textbf{Time-Discrete Domain} & Discrete-Time Fourier transform & Discrete Fourier transform \\
		\hline
	\end{tabular}
\end{table}

\subsubsection{Obtaining a frequency-continuous domain:}

\begin{minipage}{0.45\linewidth}
	\textbf{From the time-continuous domain (analog signal):}
	
	\vspace{0.5em}
	
	Fourier transform:
	\begin{equation*}
		\underline{X}(j \omega) = \int\limits_{t = -\infty}^{\infty} \underline{x}(t) \cdot e^{-j \omega t} \, \mathrm{d} t
	\end{equation*}
	
	Inverse Fourier transform:
	\begin{equation*}
		\underline{x}(t) = \frac{1}{2 \pi} \int\limits_{\omega = -\infty}^{\infty} \underline{X}(j \omega) \cdot e^{+ j \omega t} \, \mathrm{d} \omega
	\end{equation*}
	
	\begin{itemize}
		\item Continuous time: $t \in \mathbb{R}$
		\item Continuous frequency: $\omega \in \mathbb{R}$
	\end{itemize}
\end{minipage}
\hfill
\begin{minipage}{0.45\linewidth}
	\textbf{From the time-discrete domain (digital signal):}
	
	\vspace{0.5em}
	
	Discrete-time Fourier transform:
	\begin{equation*}
		\underline{X}_{2\pi}(e^{j \phi}) = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{- j \phi n}
	\end{equation*}
	
	Inverse discrete-time Fourier transform:
	\begin{equation*}
		\underline{x}[n] = \frac{1}{2 \pi} \int\limits_{- \pi}^{+ \pi} \underline{X}_{2\pi}(e^{j \phi}) \cdot e^{+ j \phi n} \, \mathrm{d} \phi
	\end{equation*}
	
	\begin{itemize}
		\item Discrete time: $n \in \mathbb{Z}$
		\item Continuous frequency: $\phi \in \mathbb{R}$
	\end{itemize}
\end{minipage}

\subsubsection{Obtaining a frequency-discrete domain:}

\begin{minipage}{0.45\linewidth}
	\textbf{From the time-continuous domain (analog signal):}
	
	\vspace{0.5em}
	
	Fourier analysis:
	\begin{equation*}
		\underline{X}[k] = \frac{\omega_0}{2 \pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \underline{x}(t) \cdot e^{-j k \omega_0 t} \, \mathrm{d} t
	\end{equation*}
	
	Fourier series:
	\begin{equation*}
		\underline{x}(t) = \sum\limits_{k = -\infty}^{\infty} \underline{X}[k] \cdot e^{+ j k \omega_0 t}
	\end{equation*}
	
	\begin{itemize}
		\item Continuous time: $t \in \mathbb{R}$
		\item Discrete frequency: $k \in \mathbb{Z}$
	\end{itemize}
\end{minipage}
\hfill
\begin{minipage}{0.45\linewidth}
	\textbf{From the time-discrete domain (digital signal):}
	
	\vspace{0.5em}
	
	Discrete Fourier transform:
	\begin{equation*}
		\underline{X}[k] = \sum\limits_{n = 0}^{N - 1} \underline{x}[n] \cdot e^{- j \frac{2 \pi}{N} k n}
	\end{equation*}
	
	Inverse discrete Fourier transform:
	\begin{equation*}
		\underline{x}[n] = \frac{1}{N} \sum\limits_{k = 0}^{N - 1} \underline{X}[k]  \cdot e^{+ j \frac{2 \pi}{N} k n}
	\end{equation*}
	
	\begin{itemize}
		\item Discrete time: $n \in \mathbb{Z}$
		\item Discrete frequency: $k \in \mathbb{Z}$
	\end{itemize}
\end{minipage}

\subsection{Systems}

\subsection{Cross-Correlation and Autocorrelation}

\subsection{Spectral Density}

\subsection{Noise}

\section{Digital Signals and Systems}

\subsection{Quantization}

\subsection{Quantization Error}

\subsection{Window Filters}

\subsection{Time Recovery}

\subsection{Practical Issues}

\phantomsection
\addcontentsline{toc}{section}{References}
\printbibliography[heading=subbibliography]
\end{refsection}