summaryrefslogtreecommitdiff
path: root/chapter02/content_ch02.tex
diff options
context:
space:
mode:
Diffstat (limited to 'chapter02/content_ch02.tex')
-rw-r--r--chapter02/content_ch02.tex62
1 files changed, 49 insertions, 13 deletions
diff --git a/chapter02/content_ch02.tex b/chapter02/content_ch02.tex
index 994dfea..745c55d 100644
--- a/chapter02/content_ch02.tex
+++ b/chapter02/content_ch02.tex
@@ -94,7 +94,7 @@ A graphical view on the creation of a cosine signal is depicted in Figure \ref{f
\centering
\begin{tikzpicture}
\begin{scope}[shift={(0, 0)}]
- \draw[-latex] (0,0) -- (4.5,0) node[below, align=left]{$t$};
+ \draw[-latex] (0,0) -- (4.5,0) node[below, align=left]{$t$};
\draw[-latex] (0,-2.2) -- (0,2.2);
\draw (1,0.1) -- (1,-0.1) node[below, align=center]{$\frac{T_0}{4}$};
\draw (2,0.1) -- (2,-0.1) node[below, align=center]{$\frac{T_0}{2}$};
@@ -107,7 +107,7 @@ A graphical view on the creation of a cosine signal is depicted in Figure \ref{f
\end{scope}
\begin{scope}[shift={(-4, 0)}]
\draw[draw] (0:2) arc(0:360:2);
- \draw[-latex] (0,0) -- (0,1) node[right, align=left]{$\Re$};
+ \draw[-latex] (0,0) -- (0,1) node[right, align=left]{$\Re$};
\draw[-latex] (0,0) -- (-1,0) node[below, align=center]{$\Im$};
\draw (180:1.9) -- (180:2.1) node[left, align=center]{$\frac{T_0}{4}$};
@@ -1690,6 +1690,15 @@ All ideal filters are non-causal and can therefore not be implemented in real.
\subsubsection{Ideal Low Pass Filter}
+\begin{figure}[H]
+ \centering
+ \begin{circuitikz}
+ \draw (0,0) to[lowpass] (2,0);
+ \end{circuitikz}
+ \caption[Block symbol of a \acs{LPF}]{Block symbol of a \ac{LPF}}
+\end{figure}%
+\nomenclature[Bl]{\begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[lowpass] (2,0);\end{circuitikz}}{Low pass filter}
+
A \index{low pass filter} \textbf{\acf{LPF}}
\begin{itemize}
\item lets pass all signals below a \index{low pass filter!cut-off frequency} \textbf{cut-off frequency} $\omega_o$ (all signals within the \index{low pass filter!pass band} \textbf{pass band} $|\omega| < \omega_o$),
@@ -1746,6 +1755,15 @@ A \index{low pass filter} \textbf{\acf{LPF}}
\subsubsection{Ideal High Pass Filter}
+\begin{figure}[H]
+ \centering
+ \begin{circuitikz}
+ \draw (0,0) to[highpass] (2,0);
+ \end{circuitikz}
+ \caption[Block symbol of a \acs{HPF}]{Block symbol of a \ac{HPF}}
+\end{figure}%
+\nomenclature[Bh]{\begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[highpass] (2,0);\end{circuitikz}}{High pass filter}
+
A \index{high pass filter} \textbf{\acf{HPF}}
\begin{itemize}
\item blocks all signals below a \index{high pass filter!cut-off frequency} \textbf{cut-off frequency} $\omega_o$ (all signals within the \index{high pass filter!stopband} \textbf{stopband} $|\omega| < \omega_o$),
@@ -1802,6 +1820,15 @@ A \index{high pass filter} \textbf{\acf{HPF}}
\subsubsection{Ideal Band Pass Filter}
+\begin{figure}[H]
+ \centering
+ \begin{circuitikz}
+ \draw (0,0) to[bandpass] (2,0);
+ \end{circuitikz}
+ \caption[Block symbol of a \acs{BPF}]{Block symbol of a \ac{BPF}}
+\end{figure}%
+\nomenclature[Bl]{\begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[bandpass] (2,0);\end{circuitikz}}{Band pass filter}
+
A \index{band pass filter} \textbf{\acf{BPF}}
\begin{itemize}
\item lets pass all signals within a \index{band pass filter!pass band} \textbf{pass band} with the \index{band pass filter!bandwidth} \textbf{bandwidth} $\omega_b$ which is centred around the \index{band pass filter!centre frequency} \textbf{centre frequency} $\omega_c$: pass band $||\omega| - \omega_c| < \frac{\omega_b}{2}$
@@ -1867,16 +1894,25 @@ The \ac{BPF} can be seen as a \ac{LPF} frequency-shifted in both positive and ne
\caption[Amplitude response of an ideal \acl{BPF}]{Amplitude response of an ideal \ac{BPF}}
\end{figure}
-\subsubsection{Ideal Band Elimination Filter}
+\subsubsection{Ideal Band Stop Filter}
+
+\begin{figure}[H]
+ \centering
+ \begin{circuitikz}
+ \draw (0,0) to[bandstop] (2,0);
+ \end{circuitikz}
+ \caption[Block symbol of a \acs{BSF}]{Block symbol of a \ac{BSF}}
+\end{figure}%
+\nomenclature[Bl]{\begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[bandstop] (2,0);\end{circuitikz}}{Band stop filter}
-A \index{band elimination filter} \textbf{\acf{BEF}}
+A \index{band stop filter} \textbf{\acf{BSF}}
\begin{itemize}
- \item blocks all signals within a \index{band eliminations filter!stopband} \textbf{stopband} with the \index{band elimination filter!bandwidth} \textbf{bandwidth} $\omega_b$ which is centred around the \index{band elimination filter!centre frequency} \textbf{centre frequency} $\omega_c$: stopband $||\omega| - \omega_c| < \frac{\omega_b}{2}$
- \item lets pass all signals outside the pass band: \index{band elimination filter!pass band} \textbf{pass band} is everything outside the stopband
+ \item blocks all signals within a \index{band stop filter!stopband} \textbf{stopband} with the \index{band stop filter!bandwidth} \textbf{bandwidth} $\omega_b$ which is centred around the \index{band stop filter!centre frequency} \textbf{centre frequency} $\omega_c$: stopband $||\omega| - \omega_c| < \frac{\omega_b}{2}$
+ \item lets pass all signals outside the pass band: \index{band stop filter!pass band} \textbf{pass band} is everything outside the stopband
\end{itemize}
\begin{equation}
- \underline{H}_{BEF}\left(j \omega\right) = 1 - \underline{H}_{BPF}\left(j \omega\right) = \begin{cases}
+ \underline{H}_{BSF}\left(j \omega\right) = 1 - \underline{H}_{BPF}\left(j \omega\right) = \begin{cases}
0 & \qquad \text{if } \; ||\omega| - \omega_c| < \frac{\omega_b}{2}, \\
1 & \qquad \text{else}
\end{cases}
@@ -1890,7 +1926,7 @@ A \index{band elimination filter} \textbf{\acf{BEF}}
width=0.8\linewidth,
scale only axis,
xlabel={$\omega$},
- ylabel={$A_{BEF}(\omega) = \left|\underline{H}_{BEF}(j \omega)\right|$},
+ ylabel={$A_{BSF}(\omega) = \left|\underline{H}_{BSF}(j \omega)\right|$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
@@ -1924,7 +1960,7 @@ A \index{band elimination filter} \textbf{\acf{BEF}}
\addplot[red, thick] coordinates {(45, 1) (50, 1)};
\end{axis}
\end{tikzpicture}
- \caption[Amplitude response of an ideal \acl{BEF}]{Amplitude response of an ideal \ac{BEF}}
+ \caption[Amplitude response of an ideal \acl{BSF}]{Amplitude response of an ideal \ac{BSF}}
\end{figure}
\subsection{Realizable Filters}
@@ -2131,7 +2167,7 @@ The cut-off frequencies or bandwidth, respectively, is defined at those frequenc
\end{figure}
\end{minipage}
-\subsubsection{Band Elimination Filter}
+\subsubsection{Band Stop Filter}
\begin{minipage}{0.45\linewidth}
\begin{figure}[H]
@@ -2144,7 +2180,7 @@ The cut-off frequencies or bandwidth, respectively, is defined at those frequenc
\draw (0, 0) to[open, v=$u_i(t)$] (0, -4);
\draw (4, 0) to[open, v^=$u_o(t)$] (4, -4);
\end{circuitikz}
- \caption{Real band elimination filter as an electrical network}
+ \caption{Real band stop filter as an electrical network}
\end{figure}
\end{minipage}
\hfill
@@ -2157,7 +2193,7 @@ The cut-off frequencies or bandwidth, respectively, is defined at those frequenc
width=0.9\linewidth,
scale only axis,
xlabel={$\omega$},
- ylabel={$A_{BEF}(\omega) = \left|\underline{H}_{BEF}(j \omega)\right|$},
+ ylabel={$A_{BSF}(\omega) = \left|\underline{H}_{BSF}(j \omega)\right|$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
@@ -2185,7 +2221,7 @@ The cut-off frequencies or bandwidth, respectively, is defined at those frequenc
\addplot[red, dashed] coordinates {(15, 0) (15, 0.707) (25, 0.707) (25, 0)};
\end{axis}
\end{tikzpicture}
- \caption[Amplitude response of a real \acl{BEF}]{Amplitude response of a real \ac{BEF}. Negative $\omega$-axis omitted.}
+ \caption[Amplitude response of a real \acl{BSF}]{Amplitude response of a real \ac{BSF}. Negative $\omega$-axis omitted.}
\end{figure}
\end{minipage}