summaryrefslogtreecommitdiff
path: root/chapter02
diff options
context:
space:
mode:
Diffstat (limited to 'chapter02')
-rw-r--r--chapter02/content_ch02.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/chapter02/content_ch02.tex b/chapter02/content_ch02.tex
index d0cc535..0105403 100644
--- a/chapter02/content_ch02.tex
+++ b/chapter02/content_ch02.tex
@@ -230,7 +230,7 @@ $w(x)$ is a non-negative weight function, which is $w(x) = 1$ in simple cases li
Now, you can prove that the cosine and sine functions are orthogonal to each other.
\begin{equation}
- \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \cos\left(n \omega_0 t\right) \sin\left(m \omega_0 t\right) \, \mathrm{d} t = 0 \qquad \forall n, m \in \mathbb{Z}
+ \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \cos\left(n \omega_0 t\right) \sin\left(m \omega_0 t\right) \, \mathrm{d} t = 0 \qquad \forall \; n, m \in \mathbb{Z}
\label{eq:ch02:orth_rel_cos_sin}
\end{equation}