summaryrefslogtreecommitdiff
path: root/chapter03/content_ch03.tex
blob: 1e0344d8031a080156b432e65f55d9775eed50c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
\chapter{Stochastic and Deterministic Processes}

\begin{refsection}

\section{Stochastic Processes}

\begin{itemize}
	\item Stochastic processes $\rightarrow$ random signal
	\item No deterministic description
	\item Description of random parameters (probability, ...)
\end{itemize}

\subsection{Statistic Mean}

Given is family of curves $\vect{x}(t) = \left\{x_1(t), x_2(t), \dots, x_n(t)\right\}$. $\vect{x}(t)$ is called a \index{random vector} \textbf{random vector}.

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.6\linewidth,
			scale only axis,
			xlabel={$t$},
			ylabel={$x(t)$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=0,
			xmax=11,
			ymin=0,
			ymax=1.7,
			xtick={0, 1, ..., 10},
			ytick={0, 0.5, ..., 1.5},
			xticklabels={0, 1, $t_0$, 3, 4, ..., 10}
		]
			\addplot[black, dashed, smooth, domain=1:10, samples=200] plot (\x,{1.5*abs(sinc((1/(2*pi))*\x))});
			\pgfmathsetseed{100}
			\addplot[red, smooth, domain=1:10, samples=50] plot (\x,{1.5*abs(sinc((1/(2*pi))*\x)) + 0.1*rand});
			\addlegendentry{$x_1$};
			\pgfmathsetseed{200}
			\addplot[blue, smooth, domain=1:10, samples=50] plot (\x,{1.5*abs(sinc((1/(2*pi))*\x)) + 0.1*rand});
			\addlegendentry{$x_2$};
			\pgfmathsetseed{300}
			\addplot[green, smooth, domain=1:10, samples=50] plot (\x,{1.5*abs(sinc((1/(2*pi))*\x)) + 0.1*rand});
			\addlegendentry{$x_3$};
			\addplot[black, very thick, dashed] coordinates {(2,0) (2,2.2)};
		\end{axis}
	\end{tikzpicture}
	\caption{Family of random signals}
\end{figure}

\begin{itemize}
	\item The curves are produced by a random process $\vect{x}(t)$. The random process is time-dependent.
	\item All curves consist of random values, which are gathered around a mean value $\E\left\{\vect{x}(t)\right\}$.
	\item The random process can emit any value $x$. However, each value $x$ has a certain likelihood $p(x, t)$ of being produced. Again, this likelihood is time-dependent like the stochastic process.
\end{itemize}

Let's assume that the values are normally distributed. The \index{probability density function} \textbf{\ac{PDF}} $p(x, t)$ of a \index{normal distribution} \textbf{normal distribution} is:
\begin{equation}
	p(x, t) = \frac{1}{\sigma(t) \sqrt{2 \pi}} e^{-\frac{1}{2} \left(\frac{x - \mu(t)}{\sigma(t)}\right)^2}
\end{equation}
$p(x, t)$ is the likelihood that the stochastic process emits the value $x$ at time instance $t$. Both the mean of the normal distribution $\mu(t)$ and the standard deviation of the normal distribution $\sigma(t)$ are time-dependent.

\begin{attention}
	Do not confuse the mean of the normal distribution $\mu$ and the mean of a series of samples $\E\left\{\cdot\right\}$ (expectation value)!
\end{attention}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.8\linewidth,
			scale only axis,
			xlabel={$x$},
			ylabel={$p(x, t_0)$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-1.2,
			xmax=4.2,
			ymin=0,
			ymax=1.2,
			xtick={-1, 0, 1, 1.47, 2, 3, 4},
			ytick={0, 0.5, ..., 2.0},
			xticklabels={-1, 0, 1, $\E\left\{\vect{x}(t_0)\right\}$, 2, 3, 4}
		]
			% ยต = 1.47, simga = 0.5
			\addplot[red, thick, smooth, domain=, samples=200] plot (\x, {(1/(0.5*sqrt(2*pi)))*exp(-0.5*((\x-1.47)/0.5)^2)});
			
			\addplot[black, very thick, dashed] coordinates {(1.47,0) (1.47,1)};
		\end{axis}
	\end{tikzpicture}
	\caption{Probability density function for an output value of a stochastic process at time $t_0$ with $\mu(t_0) = 1.47$ and $\sigma(t_0) = 0.5$}
\end{figure}

Given that
\begin{itemize}
	\item We know neither the mean of the normal distribution $\mu(t)$ nor the standard deviation of the normal distribution $\sigma(t)$.
	\item We only have $n$ samples of the curves $x_i(t_0)$ ($i \in \mathbb{N}, 0 \leq i \leq n$) at the time instance $t_0$.
	\item We do know that the random distribution of our samples $x_i(t_0)$ follows the \ac{PDF} $p(x, t_0)$.
\end{itemize}

\paragraph{How do we get the mean of out samples $\E\left\{X(t_0)\right\}$? (Finite case)}

The mean of the samples is the \index{expectation value} \textbf{expectation value} $\E\left\{\vect{x}(t_0)\right\}$. \nomenclature[Se]{$\E\left\{\cdot\right\}$}{Expectation value}

To get an approximation, we can calculate the \index{arithmetic mean} \textbf{arithmetic mean} of out $n$ samples:
\begin{equation}
	\E\left\{\vect{x}(t_0)\right\} \approx \frac{1}{n} \sum\limits_{i = 0}^{n} x_i(t_0)
	\label{eq:ch03:arith_mean}
\end{equation}
The approximation converges to the real $\E\left\{\vect{x}(t_0)\right\}$ for $n \rightarrow \infty$, because the random distribution of our samples $x_i(t_0)$ follows the \ac{PDF} $p(x, t_0)$.

\paragraph{What about an arbitrary \ac{PDF}? (Continuous case)}

\begin{itemize}
	\item We cannot collect an indefinite number of samples.
	\item However, if the \ac{PDF} is known, we can calculate the mean of our samples.
\end{itemize}

Extending, the arithmetic mean \eqref{eq:ch03:arith_mean}, with $n \rightarrow \infty$ and using all $x$ but weighted by their \ac{PDF} $p(x, t_0)$, we can determine the expectation value.
\begin{definition}{Stochastic mean}
	The \index{stochastic mean} \textbf{stochastic mean} of a \ac{PDF} is:
	\begin{equation}
		\E\left\{\vect{x}(t_0)\right\} = \int\limits_{-\infty}^{\infty} x \cdot p(x, t_0) \; \mathrm{d} x
	\end{equation}%
	\nomenclature[Se]{$\E\left\{\vect{x}\right\}$}{Stochastic mean}
\end{definition}

\begin{fact}
	In general, stochastic means are time-dependent.
\end{fact}

\paragraph{Other measures?}

The \index{quadratic stochastic mean} \textbf{quadratic stochastic mean}:
\begin{equation}
	\E\left\{\vect{x}^2(t_0)\right\} = \int\limits_{-\infty}^{\infty} x^2 \cdot p(x, t_0) \; \mathrm{d} x
\end{equation}

\subsection{Temporal Mean}

Given is a random time-domain signal $x_i(t)$ (where $i \in \mathbb{N}$ an arbitrary integer index):

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.6\linewidth,
			scale only axis,
			xlabel={$t$},
			ylabel={$x_i(t)$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-5.5,
			xmax=5.5,
			ymin=0,
			ymax=3.2,
			xtick={-5, -4, ..., 5},
			ytick={0, 1, ..., 3},
			xticklabels={-5, -4, -3, -2, $-\frac{T}{2}$, 0, $\frac{T}{2}$, 2, 3, 4, 5}
		]
			\pgfmathsetseed{100}
			\addplot[red, smooth, domain=-5:5, samples=50] plot (\x,{1.5 + 0.8*rand});
			\addplot[black, thick, dashed] coordinates {(-1,0) (-1,3.2)};
			\addplot[black, thick, dashed] coordinates {(1,0) (1,3.2)};
			\addplot[black, dashed] coordinates {(-5,1.5) (5,1.5)};
		\end{axis}
	\end{tikzpicture}
	\caption{Random time-domain signal}
\end{figure}

\textit{Remark:} The signal can be a sample of a family of signals, but it is not required to be.

The temporal mean is calculated as the arithmetic mean with following differences to \eqref{eq:ch03:arith_mean}:
\begin{itemize}
	\item The mean is calculation over the time, not over a number of samples.
	\item For a time-continuous signal, the sum extends to an integral.
	\item The arithmetic mean is calculated over the time interval $[-\frac{T}{2}, \frac{T}{2}]$. Let's make the interval indefinite.
\end{itemize}

\begin{definition}{Temporal mean}
	The \index{temporal mean} \textbf{temporal mean} of time-domain signal $x_i(t)$ is:
	\begin{equation}
		\overline{x_i} = \E\left\{x_i(t)\right\} = \lim\limits_{T \rightarrow \infty} \frac{1}{T} \int\limits_{-\frac{T}{2}}^{\frac{T}{2}} x_i{t} \; \mathrm{d} t
	\end{equation}%
	\nomenclature[Sx]{$\overline{x}$, $\E\left\{x_i(t)\right\}$}{Temporal mean of x}
\end{definition}

The temporal mean is not time-dependent.

\begin{fact}
	In general, temporal means are sample-dependent.
\end{fact}

Actually $x_i(t)$ would not need the index $i$ if there is only one sample. Nevertheless, it was kept here, to emphasize the dependency on the sample, in contrast to the dependency on the time of the stochastic mean.

\begin{attention}
	The complex conjugate uses the same notation as the temporal mean. You need to guess it from the context. The complex conjugate is only used in conjunction with complex number which can be identified by their underline.
\end{attention}

\paragraph{Other measures?}

The \index{quadratic temporal mean} \textbf{quadratic temporal mean}:
\begin{equation}
	\overline{x^2_i} = \E\left\{x^2_i(t)\right\} = \lim\limits_{T \rightarrow \infty} \frac{1}{T} \int\limits_{-\frac{T}{2}}^{\frac{T}{2}} |x_i{t}|^2 \; \mathrm{d} t
\end{equation}

\subsection{Ergodic Processes}

\begin{definition}{Ergodic process}
	\index{ergodic process} A process is \textbf{ergodic} if:
	\begin{enumerate}
		\item The stochastic means are equal at all times.
		\begin{equation}
			\E\left\{\vect{x}(t_0)\right\} = \E\left\{\vect{x}(t_1)\right\} = \dots = \E\left\{\vect{x}\right\}
		\end{equation}
		\item The temporal means of all samples are equal.
		\begin{equation}
			\overline{x_1} = \overline{x_2} = \dots = \overline{x}
		\end{equation}
		\item The stochastic mean equals the temporal mean.
		\begin{equation}
			\E\left\{\vect{x}\right\} = \overline{x} = \mu_x
		\end{equation}
	\end{enumerate}
\end{definition}

As a consequence:
\begin{itemize}
	\item One single, sufficiently long, random sample of the process is enough to deduct the statistical properties of an ergodic process.
	\item The ergodic process is in steady state (\index{wide sense stationary}\ac{WSS}), i.e., it does not erratically change its behaviour and properties.
\end{itemize}

\begin{figure}[H]
	\centering
		\begin{tikzpicture}
			\begin{axis}[
			height={0.25\textheight},
			width=0.6\linewidth,
			scale only axis,
			xlabel={$t$},
			ylabel={$x_i(t)$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-5.5,
			xmax=5.5,
			ymin=0,
			ymax=3.2,
			xtick={-5, -4, ..., 5},
			ytick={0, 1, ..., 3},
			xticklabels={-5, -4, -3, -2, $-\frac{T}{2}$, 0, $\frac{T}{2}$, 2, 3, 4, 5}
			]
			\pgfmathsetseed{100}
			\addplot[red, smooth, domain=-5:5, samples=50] plot (\x,{1.5 + 0.8*rand});
			\addlegendentry{$x_1$};
			\pgfmathsetseed{200}
			\addplot[blue, smooth, domain=-5:5, samples=50] plot (\x,{1.5 + 0.8*rand});
			\addlegendentry{$x_2$};
			\pgfmathsetseed{300}
			\addplot[green, smooth, domain=-5:5, samples=50] plot (\x,{1.5 + 0.8*rand});
			\addlegendentry{$x_3$};
			\addplot[black, dashed] coordinates {(-5,1.5) (5,1.5)};
			\addlegendentry{$\mu_x$};
		\end{axis}
		\end{tikzpicture}
	\caption{Three samples of the same ergodic process}
\end{figure}

\subsection{Cross-Correlation}

\begin{itemize}
	\item Imagine you have two random processes.
	\item They produce the (complex) random vectors $\cmplxvect{x}(t)$ and $\cmplxvect{y}(t)$.
	\item The random processes can be somehow related (correlated) to each other. But they can also be independent instead.
	\item How can we find this out?
\end{itemize}

We need a similarity measure. The cross-correlation is such a measure.

\begin{definition}{Cross-correlation of stochastic processes}
	The \index{cross-correlation!stochastic process} \text{cross-correlation of two stochastic processes} $\cmplxvect{x}(t_1)$ and $\cmplxvect{y}(t_2)$ between the times $t_1$ and $t_2$ is:
	\begin{equation}
		\underline{\mathrm{R}}_{XY}(t_1, t_2) = \E\left\{ \cmplxvect{x}(t_1) \overline{\cmplxvect{y}(t_2)} \right\}
	\end{equation}%
	\nomenclature[Sr]{$\mathrm{R}_{XY}$}{Cross-correlation of two random vectors}
	where $\overline{\left(\cdot\right)}$ denotes the complex conjugate.
\end{definition}

The expectation value can be expressed for real values as:
\begin{equation}
	\mathrm{R}_{XY}(t_1, t_2) = \E\left\{ \vect{x}(t_1) \vect{y}(t_2) \right\} = \int\limits_{y = -\infty}^{\infty} \int\limits_{x = -\infty}^{\infty} x y \cdot p(x, y, t_1, t_2) \; \mathrm{d} x \mathrm{d} y
\end{equation}
$p(x, y, t_1, t_2)$ is the joint \ac{PDF} of the two random processes. It defines the likelihood that $x$ is produced at time $t_1$ \textbf{and} $y$ is produced at time $t_2$.

Let's derive a special case for \textbf{ergodic} or \ac{WSS} processes:
\begin{itemize}
	\item The time difference is $\tau = t_2 - t_1$.
	\item Because of the ergodicity of the two processes, only one sample of each $x_i(t)$ and $y_i(t)$ needs to be taken.
	\item An estimation for the cross-correlation is averaging the products of the time-shifted samples $x_i(t) \cdot y_i(t+\tau)$. This resembles
\end{itemize}
Extending this to complex numbers yields:
\begin{equation}
	\underline{\mathrm{R}}_{XY}(\tau) = \E\left\{ \cmplxvect{x}(t) \overline{\cmplxvect{y}(t+\tau)} \right\} \approx \lim\limits_{T \rightarrow \infty} \frac{1}{T} \int\limits_{t = -\frac{T}{2}}^{\frac{T}{2}} \underline{x}_i(t) \cdot \overline{\underline{y}_i(t+\tau)} \; \mathrm{d} t
\end{equation}

This resembles the cross-correlation of deterministic signals
\begin{definition}{Cross-correlation of deterministic signals}
	The \index{cross-correlation!deterministic signals} \text{cross-correlation of two deterministic signals} $\underline{f}(t_1)$ and $\underline{g}(t_2)$ between the times $\tau = t_2 - t_1$ is:
	\begin{equation}
		\left(\underline{f} \star \underline{g}\right)(\tau) = \int\limits_{t = -\infty}^{\infty} \underline{f}(t) \cdot \overline{\underline{g}(t+\tau)} \; \mathrm{d} t
	\end{equation}%
	\nomenclature[N]{$\left(f \ast g\right)(\tau)$}{Cross-correlation of two signals}
\end{definition}

\begin{attention}
	You must not confuse the operators for the convolution $*$ and correlation $\star$.
\end{attention}

For the random signals $\underline{x}(t)$ and $\underline{y}(t)$, the cross-correlation can not be determined analytically, but numerically.
\begin{equation}
	\underline{\mathrm{R}}_{XY}(\tau) \approx \left(\underline{x} \star \underline{y}\right)(\tau)
\end{equation}

\paragraph{What's the purpose?}

\begin{itemize}
	\item The cross-correlation ``scans'' the two signals for common features.
	\item The cross-correlation $\underline{\mathrm{R}}_{XY}(\tau)$ will show a peak at the time lag $\tau$, if
	\begin{itemize}
		\item The signals are correlated, i.e., have a common feature.
		\item The common feature is time-shifted by $\tau$.
	\end{itemize}
	\item A flat near $0$ cross-correlation means that the signals are uncorrelated.
\end{itemize}

\begin{excursus}{Why the conjugate complex in the cross-correlation?}
	The conjugate complex provides a measure for the similarity of two functions. The similarity of two functions $\underline{f}(t_1)$ and $\underline{g}(t_2)$ at the times $T_1$ and $t_2$ is defined by:
	\begin{itemize}
		\item The amplitude product: the higher, the more correlated.
		\item The phase difference: the lower, the more correlated.
	\end{itemize}
	The second point is the reason, why the conjugate complex is used. We need the phase difference $\arg\left(\underline{f}(t_1)\right) - \arg\left(\underline{g}(t_2)\right)$.
	
	The phase difference is obtained by using the conjugate complex:
	\begin{equation}
		\underline{f}(t_1) \overline{\underline{g}(t_2)} = \underbrace{\left|\underline{f}(t_1)\right|\left|\underline{g}(t_2)\right|}_{\text{Amplitude product}} \underbrace{e^{j\left(\arg\left(\underline{f}(t_1)\right) - \arg\left(\underline{g}(t_2)\right)\right)}}_{\text{Phase difference}}
	\end{equation}
	In contrast to that, not using the conjugate complex would give the phase sum, not difference.
\end{excursus}

\section{Spectral Density}

\subsection{Autocorrelation}

The autocorrelation is the correlation $\underline{\mathrm{R}}_{XX}(t_1, t_2)$ of a stochastic process $\cmplxvect{x}(t)$ with a time-shifted copy of itself.
\begin{equation}
	\underline{\mathrm{R}}_{XX}(t_1, t_2) = \E\left\{ \cmplxvect{x}(t_1) \overline{\cmplxvect{x}(t_2)} \right\}
\end{equation}

For \textbf{ergodic} or \ac{WSS} processes, the autocorrelation $\underline{\mathrm{R}}_{XX}(\tau)$ is the correlation of a signal $\underline{x}(t)$ with a time-shifted copy of itself:
\begin{equation}
	\underline{\mathrm{R}}_{XX}(\tau) = \E\left\{ \cmplxvect{x}(t) \overline{\cmplxvect{x}(t+\tau)} \right\} \approx \lim\limits_{T \rightarrow \infty} \frac{1}{T} \int\limits_{t = -\frac{T}{2}}^{\frac{T}{2}} \underline{x}_i(t) \cdot \overline{\underline{x}_i(t+\tau)} \; \mathrm{d} t
\end{equation}
\begin{equation}
	\underline{\mathrm{R}}_{XX}(\tau) \approx \left(x \star x\right)(\tau) = \int\limits_{t = -\infty}^{\infty} \underline{x}_i(t) \cdot \overline{\underline{x}_i(t+\tau)} \; \mathrm{d} t
\end{equation}

\subsubsection{Properties}

\paragraph{Symmetry.}

The autocorrelation function $\underline{\mathrm{R}}_{XX}(\tau)$ is Hermitian.

\begin{equation}
	\underline{\mathrm{R}}_{XX}(\tau) = \overline{\underline{\mathrm{R}}_{XX}(-\tau)}
	\label{eq:ch02:autocorr_hermitian}
\end{equation}

\paragraph{Bounded output.}

For an ergodic or \ac{WSS} process, the autocorrelation function has its maximum at $\underline{\mathrm{R}}_{XX}(0)$.

\begin{equation}
	\left|\underline{\mathrm{R}}_{XX}(\tau)\right| \leq \left|\underline{\mathrm{R}}_{XX}(0)\right|
\end{equation}

\paragraph{Cauchy-Schwarz inequality.}

For all stochastic processes -- even for non-ergodic or non-\acs{WSS} processes:

\begin{equation}
	\left|\underline{\mathrm{R}}_{XX}(t_1, t_2)\right|^2 \leq \E\left\{ \left|\cmplxvect{x}(t_1)\right|^2 \right\} \cdot \E\left\{ \left|\cmplxvect{x}(t_2)\right|^2 \right\}
\end{equation}

\begin{excursus}{Convolution vs. Cross-Correlation vs. Autocorrelation}
	Have a look at the following integrals:
	\begin{itemize}
		\item Convolution:
		\begin{equation*}
			\underline{f}(t) * \underline{g}(t) = \left(\underline{f} * \underline{g}\right) (t) = \int_{\tau = -\infty}^{\infty} \underline{f}(\tau) \underline{g}(t - \tau) \, \mathrm{d} \tau  = \int_{\tau = -\infty}^{\infty} \underline{f}(t - \tau) \underline{g}(\tau) \, \mathrm{d} \tau
		\end{equation*}
		\item Cross-Correlation:
		\begin{equation*}
			\left(\underline{f} \star \underline{g}\right)(\tau) = \int\limits_{t = -\infty}^{\infty} \underline{f}(t) \cdot \overline{\underline{g}(t+\tau)} \; \mathrm{d} t
		\end{equation*}
		\item Autocorrelation:
		\begin{equation*}
			\left(\underline{f} \star \underline{f}\right)(\tau) = \int\limits_{t = -\infty}^{\infty} \underline{f}(t) \cdot \overline{\underline{f}(t+\tau)} \; \mathrm{d} t
		\end{equation*}
	\end{itemize}
	Don't they look similar?
	
	Yes, they do, but they are not the same.
	\begin{itemize}
		\item All functions integrate one signal multiplied with another signal which is shifted in time. The time lag $\tau$ is the argument of all functions.
		\item However, convolution and cross-correlation shift the second signal in different directions.
		\item The convolution is commutative. The cross-correlation is not.
		\item The autocorrelation is a special application of the cross-correlation. It is the cross-correlation of a signal with itself.
		\item The cross-correlation requires the conjugate complex of the second signal.
	\end{itemize}

	\begin{figure}[H]
		\centering
		\includegraphics[width=0.8\linewidth]{svg/ch03_Conv_Corr_Auto.pdf}
		\caption{Visual comparison of convolution, cross-correlation and autocorrelation. \licensequote{\cite{Cmglee2016}}{''Cmglee''}{\href{https://creativecommons.org/licenses/by-sa/3.0/deed.en}{CC-BY-SA 3.0}}}
	\end{figure}
\end{excursus}

\subsection{Energy Spectral Density}

\begin{definition}{Parseval's theorem}
	Given is a time domain function $\underline{x}(t)$ and its Fourier transform $\underline{X}\left(j \omega\right)$. According to the \index{Parseval's theorem} Parseval's theorem:
	\begin{equation}
		\int\limits_{-\infty}^{\infty} \left|\underline{x}(t)\right|^2 \; \mathrm{d} t = \frac{1}{2 \pi} \int\limits_{-\infty}^{\infty} \left|\underline{X}\left(j \omega\right)\right|^2 \; \mathrm{d} \omega
	\end{equation}
\end{definition}

Let's remember the signal energy defined in Chapter 2.
\begin{equation}
	E = \int\limits_{-\infty}^{\infty} \left|\underline{x}(t)\right|^2 \; \mathrm{d} t
\end{equation}

Using the Parseval's theorem:
\begin{equation}
	E = \int\limits_{-\infty}^{\infty} \left|\underline{x}(t)\right|^2 \; \mathrm{d} t = \frac{1}{2 \pi} \int\limits_{-\infty}^{\infty} \left|\underline{X}\left(j \omega\right)\right|^2 \; \mathrm{d} \omega
	\label{eq:ch03:sig_energy_parseval}
\end{equation}

\begin{itemize}
	\item The total signal energy can be calculated by integrating the squared sum of either the time domain signal or the frequency domain signal.
	\item This is like the \emph{principle of conservation of power} in the signal theory.
\end{itemize}

The definition of the \textbf{energy spectral density} $\mathrm{S}_{E,xx}(\omega)$ can be derived from \eqref{eq:ch03:sig_energy_parseval}.

\begin{definition}{Energy spectral density}
	\begin{equation}
		\mathrm{S}_{E,xx}(\omega) = \frac{1}{2 \pi} \left|\underline{X}\left(j \omega\right)\right|^2
	\end{equation}%
	\nomenclature[Ss]{$\underline{\mathrm{S}}_{E,xx}(\omega)$}{Energy spectral density}
	
	The \index{energy spectral density} \textbf{energy spectral density} is the squared Fourier transform of the time domain signal $\underline{x}(t)$. It is always real-valued.
\end{definition}

The energy spectral density describes how the signal energy is distributed over the frequency.
\begin{equation}
	E = \int\limits_{-\infty}^{\infty} \mathrm{S}_{E,xx}(\omega) \; \mathrm{d} \omega
\end{equation}

\subsection{Power Spectral Density}

\begin{itemize}
	\item The energy spectral density is applicable for energy signals with a finite energy.
	\item We deal with \ac{WSS} (ergodic) processes which are power signals, i.e., their signal energy is infinite.
\end{itemize}

Analogue to the energy spectral density, we will find the \index{power spectral density} \textbf{\ac{PSD}} $\mathrm{S}_{P,xx}(\omega)$ or simply $\mathrm{S}_{xx}(\omega)$. It describes the distribution of the signal power over the frequency. \nomenclature[Ss]{$\mathrm{S}_{xx}(\omega)$, $\mathrm{S}_{P,xx}(\omega)$}{Power spectral density}

\begin{definition}{Wiener-Khinchin theorem}
	The \index{Wiener-Khinchin theorem} Wiener-Khinchin theorem states that the autocorrelation function of a \ac{WSS} process is the inverse Fourier transform of the \index{power spectral density} \textbf{\ac{PSD}}.
	
	\begin{equation}
		\underline{\mathrm{R}}_{XX}(\tau) = \frac{1}{2 \pi} \int\limits_{-\infty}^{\infty} \mathrm{S}_{xx}(\omega) e^{j \omega \tau} \; \mathrm{d} \omega = \mathcal{F}^{-1} \left\{\mathrm{S}_{xx}(\omega)\right\}
	\end{equation}
	
	And vice versa,
	\begin{equation}
		\mathrm{S}_{xx}(\omega) = \int\limits_{-\infty}^{\infty} \underline{\mathrm{R}}_{XX}(\tau) e^{-j \omega \tau} \; \mathrm{d} \tau = \mathcal{F}\left\{\underline{\mathrm{R}}_{XX}(\tau)\right\}
		\label{eq:ch03:psd_def}
	\end{equation}
\end{definition}

The \ac{PSD} $\mathrm{S}_{xx}(\omega)$ is always real-valued -- even for a complex-valued signal $\underline{x}(t)$ and its complex-valued autocorrelation function $\underline{\mathrm{R}}_{XX}(\tau)$.
\begin{itemize}
	\item The autocorrelation is Hermitian \eqref{eq:ch02:autocorr_hermitian}.
	\item Due to the symmetry rules, the Fourier transform of a real-valued signal is Hermitian.
	\item Using the duality of the Fourier transform, the Fourier transform of a Hermitian function is real-valued.
	\item Therefore, the \ac{PSD} $\mathrm{S}_{xx}(\omega)$ is real-valued, because it is the Fourier transform of the Hermitian autocorrelation function $\mathrm{R}_{XX}(\tau)$.
\end{itemize}

\begin{excursus}{Unit of the \ac{PSD}}
	The time domain signal is a physical quantity with a unit. The autocorrelation has the square of the unit. Because of \eqref{eq:ch03:psd_def}, the unit of the \ac{PSD} must be the squared unit of the physical quantity divided by seconds.
	
	Example:
	\begin{itemize}
		\item A voltage signal is given in the time domain: $u(t)$.
		\item Its unit is \si{V}.
		\item the unit of the autocorrelation is $\si{V^2}$.
		\item In electrical engineering, the power of a voltage signal depends also on an ohmic resistance $R$, which the voltage is applied to.
		\item Thus, the \ac{PSD} of the voltage signal is divided by $R$. This yields the unit $\si{W/(1/s)}$.
		\item In practice, the real frequency is used in favour of the angular frequency. The unit of $\mathrm{S}_{xx}(f)$ is $\si{W/Hz}$.
	\end{itemize}
	Watt per Hertz makes clear that the power is distributed over the frequency.
\end{excursus}

\subsubsection{Special Case: Real-Valued Signal}

If a signal $x(t)$ is always real-valued:
\begin{itemize}
	\item The autocorrelation function $\mathrm{R}_{XX}(\tau)$ is always real-valued, too.
	\item The autocorrelation function $\mathrm{R}_{XX}(\tau) = \mathrm{R}_{XX}(-\tau)$ is even.
	\item The \ac{PSD} $\mathrm{S}_{xx}(\omega) = \mathrm{S}_{xx}(- \omega)$ is even, too.
\end{itemize}

%TODO
%The Wiener-Khinchin theorem can be simplified:
%\begin{subequations}
%	\begin{align}
%		\mathrm{R}_{XX}(\tau) = \frac{1}{2 \pi} \int\limits_{-\infty}^{\infty} \mathrm{S}_{xx}(\omega) e^{j \omega \tau} \; \mathrm{d} \omega \\
%		\mathrm{S}_{xx}(\omega) = \int\limits_{-\infty}^{\infty} \underline{\mathrm{R}}_{XX}(\tau) e^{-j \omega \tau} \; \mathrm{d} \tau
%	\end{align}
%\end{subequations}

\subsubsection{Signal Power}

Let's recall the definition of the signal power.
\begin{equation}
	P = \lim\limits_{T \rightarrow \infty} \frac{1}{T} \int\limits_{-\frac{T}{2}}^{\frac{T}{2}} \left|x(t)\right|^2 \; \mathrm{d} t
\end{equation}

The \ac{PSD} $\mathrm{S}_{xx}(\omega)$ defines the density of power. The whole signal power is the integral over the whole spectrum.
\begin{equation}
	P = \int\limits_{-\infty}^{\infty} \mathrm{S}_{xx}(\omega) \; \mathrm{d} \omega
\end{equation}

Consider a special case of the autocorrelation function $\underline{\mathrm{R}}_{XX}(0)$ at a time lag of zero $\tau = 0$.
\begin{equation}
	\underline{\mathrm{R}}_{XX}(0) = \frac{1}{2 \pi} \underbrace{\int\limits_{-\infty}^{\infty} \mathrm{S}_{xx}(\omega) \; \mathrm{d} \omega}_{= P}
\end{equation}

The autocorrelation function $\underline{\mathrm{R}}_{XX}(0)$ at a time lag of zero $\tau = 0$ is the signal power divided by $2 \pi$.
\begin{equation}
	\underline{\mathrm{R}}_{XX}(0) = \frac{1}{2 \pi} P
\end{equation}

\textit{Remark:} $\underline{\mathrm{R}}_{XX}(0)$ is always real-valued because $\underline{\mathrm{R}}_{XX}(\tau)$ is a Hermitian function.

\subsubsection{Signal Power of A Band-Limited, Real-Valued Signal}

The power of all signals is distributes in both positive and negative frequencies.

The power of a certain band $[\omega_1, \omega_2]$ of a real-valued signal contains the power of $[-\omega_2, -\omega_1]$, too.
\begin{equation}
	\begin{split}
		P_{bandlimited} &= \int\limits_{\omega_1}^{\omega_2} \mathrm{S}_{xx}(\omega) \; \mathrm{d} \omega + \int\limits_{-\omega_2}^{-\omega_1} \mathrm{S}_{xx}(\omega) \; \mathrm{d} \omega \\
		 &= 2 \int\limits_{\omega_1}^{\omega_2} \mathrm{S}_{xx}(\omega) \; \mathrm{d} \omega
	\end{split}
\end{equation}

\begin{attention}
	Don't forget do double the ``band-limited integral'' for a real-valued signal.
\end{attention}

\subsubsection{\acs{PSD} of Input and Output of an \acs{LTI} System}

An input signal $\underline{x}(t)$ to an \ac{LTI} system has the autocorrelation function $\underline{\mathrm{R}}_{XX}(\tau)$.
\begin{equation}
	\underline{\mathrm{R}}_{XX}(\tau) \approx \underline{x}(t) \star \underline{x}(t) = \underline{x}(t) * \overline{\underline{x}(-t)}
\end{equation}

The \ac{PSD} is:
\begin{equation}
	\mathrm{S}_{xx}(\omega) = \mathcal{F}\left\{\underline{\mathrm{R}}_{XX}(\tau)\right\} = \underline{X}\left(j \omega\right) \cdot \overline{\underline{X}\left(j \omega\right)} = \left|\underline{X}\left(j \omega\right)\right|^2
\end{equation}

Same applies for the output signal $\underline{y}(t)$:
\begin{equation}
	\mathrm{S}_{yy}(\omega) = \left|\underline{Y}\left(j \omega\right)\right|^2
\end{equation}

$\underline{Y}\left(j \omega\right)$ can be calculated using the transfer function $\underline{H}\left(j \omega\right)$:
\begin{equation}
	\begin{split}
		\underline{Y}\left(j \omega\right) &= \underline{H}\left(j \omega\right) \cdot \underline{X}\left(j \omega\right) \\
		\left|\underline{Y}\left(j \omega\right)\right|^2 &= \left|\underline{H}\left(j \omega\right) \cdot \underline{X}\left(j \omega\right)\right|^2 \\
		\left|\underline{Y}\left(j \omega\right)\right|^2 &= \left|\underline{H}\left(j \omega\right)\right|^2 \cdot \mathrm{S}_{xx}(\omega)
	\end{split}
\end{equation}

The \acp{PSD} of the input and output of an \acs{LTI} system is connected by the square of the transfer function:
\begin{equation}
	\mathrm{S}_{yy}(\omega) = \left|\underline{H}\left(j \omega\right)\right|^2 \cdot \mathrm{S}_{xx}(\omega)
	\label{eq:ch03:psd_lti_io}
\end{equation}

\subsection{Decibel}

After the previous section were very mathematical, let's go back to electrical engineering.

Signal powers in communication system cover a wide range, for example:
\begin{itemize}
	\item Several watts to kilowatts ($10^3$) at the transmitter.
	\item Nanowatt and less ($10^{-9}$) at the receiver.
\end{itemize}
These values are hard to display. Nanowatt would be close to zero when they are depicted in the same plot as the kilowatts. To resolve this issue, logarithmic plots are chosen.

\begin{figure}[H]
	\centering
	
	\subfloat[Linear scale]{
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.25\textheight},
				width=0.35\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$A_{LPF}(\omega) = \left|\underline{H}_{LPF}(j \omega)\right|$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-102,
				xmax=102,
				ymin=0,
				ymax=1.2,
				xtick={0},
				xticklabels={0},
				ytick={0, 0.01, 0.1, 1},
			]
				% RC = 0.2
				\addplot[blue, thick, domain=-100:100, samples=50] plot (\x, {sqrt( 1 / ((0.2 * \x)^2 + 1) )});
			\end{axis}
		\end{tikzpicture}
	}
	\subfloat[Logarihtmic scale]{
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.25\textheight},
				width=0.35\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$A_{LPF}(\omega) = \left|\underline{H}_{LPF}(j \omega)\right|$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-102,
				xmax=102,
				ymin=-2,
				ymax=0.2,
				xtick={0},
				xticklabels={0},
				ytick={-2, -1, 0},
				yticklabels={0.01, 0.1, 1}
			]
				% RC = 0.2
				\addplot[blue, thick, domain=-100:100, samples=50] plot (\x, {log10(sqrt( 1 / ((0.2 * \x)^2 + 1) ))});
			\end{axis}
		\end{tikzpicture}
	}

	\caption[Example: Amplitude response of a real \acl{LPF}]{Example: Amplitude response of a real \ac{LPF}}
\end{figure}

But logarithmic expression of signal powers is also common for calculation.
\begin{itemize}
	\item Given that there is an input signal with a power of $P_x = \SI{2}{mW}$.
	\item The signal is amplified by an \ac{LTI} system by a factor of \num{50000}.
	\item The output signal has a power of $P_y = \SI{100000}{mW} = \SI{100}{W}$.
\end{itemize}

Multiplications and numbers with a strongly varying exponent are unhandy. So, they are transformed into the \emph{logarithmic domain}.

\paragraph{Power Quantities.}
A signal with a power quantity $P$ must be referenced to a \emph{reference value} $P_0$. $L_P$ is the \index{power level} \textbf{power level} in reference to $P_0$.
\begin{equation}
	L_P = \SI{10}{dB} \cdot \log_{10} \left(\frac{P}{P_0}\right)
	\label{eq:ch03:level_dbm}
\end{equation}
Vice versa,
\begin{equation}
	P = 10^{\frac{L_P}{\SI{10}{dB}}} \cdot P_0
\end{equation}
The unit of levels is \index{decibel} \textbf{decibel} \si{dB}.

A common reference for powers is $P_0 = \SI{1}{mW}$. So the input signal is $L_{P,x} = \SI{3}{dBm}$. The ``m'' after decibel defines the reference value. \si{dBm} always means that the power level is referenced to $P_0 = \SI{1}{mW}$.

\paragraph{Power Spectral Density.}

If a \ac{PSD} $\mathrm{S}_{xx}(\omega)$ is given, it can be also converted to logarithmic scale using \eqref{eq:ch03:level_dbm} and a reference power $P_0$. The unit is in this case \si{dBm/Hz}.

\paragraph{Ratios.}
The logarithm transform can be applied to ratios of two signal powers. The example system has a gain of $G = 50000$.
\begin{equation}
	G = \frac{P_y}{P_x}
\end{equation}

\begin{equation}
	L_{G,P} = \SI{10}{dB} \cdot \log_{10} \left(G\right) = \SI{10}{dB} \cdot \log_{10} \left(\frac{P_y}{P_x}\right)
\end{equation}

Here, the system gain is \SI{47}{dB}.

\begin{attention}
	Ratios are never referenced to a physical quantity. Their unit is \underline{always \si{dB}}, never \si{dBm} or anything else.
\end{attention}

\paragraph{Operations.}

Using the linear power scale, applying a gain to an input signal is a multiplication. For logarithms, the following applies:
\begin{equation}
	\log \left(a \cdot b\right) = \log a + \log b
\end{equation}

Consequently, the output power level $L_{P,y} = L_{P,x} + L_{G,P} = \SI{50}{dBm}$. The unit \si{dBm} is retained, \si{dB} is just a unit-less ratio. \SI{50}{dBm} can then be transformed back to the linear power scale using the reference power $P_0 = \SI{1}{mW}$. $P_y = \SI{100}{W}$.

\paragraph{Other Physical Quantities.}

Above explanations considered signal powers. However, some signals are given in voltages or currents.

If the voltage is applied to a impedance $R$, the power is
\begin{equation}
	P = \frac{U^2}{R}
\end{equation}

The level is, using the reference $U_0 = \sqrt{P_0 R}$:
\begin{equation}
	\begin{split}
		L_U &= \SI{10}{dB} \cdot \log_{10} \left(\frac{P}{P_0}\right) \\
		 &= \SI{10}{dB} \cdot \log_{10} \left(\frac{U^2}{R} \cdot \frac{R}{U_0^2}\right) \\
		 &= \SI{10}{dB} \cdot \log_{10} \left(\left(\frac{U}{U_0}\right)^2\right) \\
		 &= \SI{20}{dB} \cdot \log_{10} \left(\frac{U}{U_0}\right) \\
	\end{split}
\end{equation}

Same applies for currents.

So, pure powers have a factor of $\SI{10}{dB}$ and current and voltage signals $\SI{20}{dB}$.

\paragraph{Different Reference Levels.}

The logarithmic scale is used for various physical quantities. The table below shows common values, using in communication systems.

\begin{table}[H]
	\centering
	\caption{Common reference levels and the corresponding unit}
	\begin{tabular}{|r|l|l|}
		\hline
		Reference level $P_0$, $U_0$, $I_0$, ... & Unit & Description \\
		\hline
		\hline
		n/a & \si{dB} & Relative \\
		\hline
		\SI{1}{mW} & \si{dBm} & Power \\
		\hline
		\SI{1}{W} & \si{dBW} & Power \\
		\hline
		\SI{1}{V} & \si{dBV} & Voltage \\
		\hline
		\SI{1}{\micro.V} & \si{dB\micro.V} & Voltage \\
		\hline
		\SI{1}{Hz} & \si{dBHz} & Frequency, bandwidth \\
		\hline
		Power of carrier signal & \si{dBc} & Relative to carrier \\
		\hline
	\end{tabular}
\end{table}

\begin{attention}
	If you add two powers, never do this in the logarithmic scale. For example, two powers of \SI{20}{dBm} and \SI{23}{dBm}.
	\begin{equation*}
		\SI{20}{dBm} + \SI{23}{dBm} \neq \SI{43}{dBm} \quad \text{!!!}
	\end{equation*}
	Right:
	\begin{equation*}
		\begin{split}
			\SI{20}{dBm} &\equiv \SI{100}{mW} \\
			\SI{23}{dBm} &\equiv \SI{200}{mW} \\
			\SI{100}{mW} + \SI{200}{mW} = \SI{300}{mW} &\equiv \SI{25}{dBm} \\
		\end{split}
	\end{equation*}
\end{attention}

\section{Noise}

Real systems are not ideal.
\begin{itemize}
	\item They contribute noise to the signals.
	\item Noise is any unwanted modification of the signal.
	\item Noise is the result of a random process in most cases.
\end{itemize} 

\subsection{Types of Noise}

Here is a selection of \index{noise} noise types:
\begin{description}
	\item[Additive noise] The noise is added to the signal.
	\item[Quantization error] During quantization, a real value of the input signal is assigned to a discrete integer value. The input signal is rounded to the nearest discrete value. This loss of information shows up as noise.
	\item[Shot noise] Noise due to static electricity discharges (discrete events)
	\item[Phase noise] Random time shifts of the signal.
	\item[...]
\end{description}

Additive noise can be further divided into various types:
\begin{itemize}
	\item White noise
	\item \ac{AWGN}
	\item Pink noise or $1/f$-noise
	\item Brownian noise or $1/f^2$-noise
	\item ...
\end{itemize}

We will investigate the \ac{AWGN} in this chapter. Besides quantization noise and phase noise, it is most dominating in communication systems. However, please keep the other noise types in mind. They have various reasons and models, and may be relevant in system design.

\subsection{Additive White Gaussian Noise}

\index{additive white Gaussian noise} \ac{AWGN} is noise which is:
\begin{itemize}
	\item \textbf{additive}: The noise is added to the signal.
	\item \textbf{white}: The noise power is equally distributed over the frequency. The noise \ac{PSD} is a constant.
	\item \textbf{Gaussian}: The noise is drawn from a normally distributed random process.
\end{itemize}

\paragraph{Additive Noise.}

\index{additive noise} Additive means that the noise is added to the signal while it passes through a system. \ac{AWGN} is intrinsic to the system, i.e., the random process generating the noise runs inside the system.

If an input signal $\underline{x}(t)$ is given to a system with the impulse response $\underline{h}(t)$, the output signal $\underline{y}(t)$ is also affected by the additive noise $\underline{w}(t)$.
\begin{equation}
	\underline{y}(t) = \left(\underline{x}(t) * \underline{h}(t)\right) + \underline{w}(t)
\end{equation}%
\nomenclature[Sn]{$\underline{w}(t)$}{Additive white Gaussian noise in the time domain}
%Or, in the frequency domain:
%\begin{equation}
%	\underline{Y}\left(j \omega\right) = \underline{X}\left(j \omega\right) \underline{H}\left(j \omega\right) + \underline{W}\left(j \omega\right)
%\end{equation}

\paragraph{White Noise.}

\index{white noise} White noise is ideal noise. It is the result of an ideal random process.
\begin{itemize}
	\item Each sample drawn from the random process $\underline{w}(t)$ at the time instance $t$ is uncorrelated with any other sample.
	\item A corollary is that the autocorrelation is zero for any $\tau \neq 0$: $\underline{\mathrm{R}}_{ww}(\tau) = 0 \; \forall\; \tau \neq 0$
	\item Each value of $\mathbb{C}$ can be taken by $\underline{w}(t)$.
	\item That means that the signal power is infinite, i.e., $\underline{\mathrm{R}}_{ww}(0) = \infty$.
	\item The mean of the process must be zero.
\end{itemize}

The autocorrelation function of ideal white noise is:
\begin{equation}
	\underline{\mathrm{R}}_{ww}(\tau) = \begin{cases}
		\infty, & \quad \text{if } \tau = 0 \\
		0, & \quad \text{else}
	\end{cases}
\end{equation}
So, the autocorrelation function of ideal white noise is the Dirac delta function.
\begin{equation}
	\underline{\mathrm{R}}_{ww}(\tau) = \delta(\tau)
\end{equation}

The \ac{PSD} of ideal white noise is therefore ($\delta(t) \TransformHoriz 1$):
\begin{equation}
	\mathrm{S}_{ww}(\omega) = 1
\end{equation}
The power of ideal white noise is distributed equally over the frequency.

\paragraph{Gaussian Distribution.}

\begin{itemize}
	\item Ideal white noise does not exist, because the signal energy cannot be infinite.
	\item The random process is therefore assumed to be normally distributed with a mean $\mu = 0$ and a finite variance $\sigma^2 < \infty$ (the noise).
\end{itemize}

The time domain noise samples $\underline{w}(t)$ are drawn from a Gaussian process $\mathcal{N}(\mu, \sigma^2)$.
\begin{equation}
	\underline{w}(t) \sim \mathcal{N}(\mu = 0, \sigma^2)
\end{equation}

The \ac{PDF} for a Gaussian distribution is:
\begin{equation}
	p(w) = \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2} \left(\frac{w - \mu}{\sigma}\right)^2}
\end{equation}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{scope}[shift={(0, 0)}]
			\draw[-latex] (-1,0) -- (5.5,0) node[below, align=center]{$t$};
			\draw[-latex] (0,-2.2) -- (0,2.2) node[left, align=right]{$w(t)$};
			\pgfmathsetseed{200};
			\draw[blue, smooth, domain=-0.5:5, samples=100] plot (\x,{1.3*rand});
		\end{scope}
		\begin{scope}[shift={(-2, 0)},rotate=90]
			\draw[-latex, dashed] (-2.2,0) -- (2.2,0) node[right, align=left]{$w$};
			\draw[-latex, dashed] (0,0) -- (0,1.5) node[below, align=center]{$p(w)$};
			\draw[red, thick, dashed, smooth, domain=-2:2, samples=50] plot (\x, {(1/(0.5*sqrt(2*pi)))*exp(-0.5*((\x)/0.5)^2)});
		\end{scope}
		\draw[brown, dashed] (-3, 1.5) -- ++(9,0) node[right,align=left]{$3 \sigma$};
		\draw[brown, dashed] (-3, 1.0) -- ++(9,0) node[right,align=left]{$2 \sigma$};
		\draw[brown, dashed] (-3, 0.5) -- ++(9,0) node[right,align=left]{$\sigma$};
		\draw[brown, dashed] (-3, -0.5) -- ++(9,0) node[right,align=left]{$-\sigma$};
		\draw[brown, dashed] (-3, -1.0) -- ++(9,0) node[right,align=left]{$-2 \sigma$};
		\draw[brown, dashed] (-3, -1.5) -- ++(9,0) node[right,align=left]{$-3 \sigma$};
	\end{tikzpicture}
	\caption[AWGN in the time domain]{\ac{AWGN} in the time domain}
\end{figure}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\draw[-latex] (-1,0) -- (6.5,0) node[below, align=center]{$t$};
		\draw[-latex] (0,-3.2) -- (0,3.2) node[left, align=right]{$x(t)$};
		\draw[blue, thick, dashed, smooth, domain=-0.5:6, samples=100] plot (\x, {3*cos(360*\x/4-60)});
		\pgfmathsetseed{200};
		\draw[red, thick, smooth, domain=-0.5:6, samples=100] plot (\x, {3*cos(360*\x/4-60)+0.5*rand});
	\end{tikzpicture}
	\caption[Effect of AWGN on a signal (here monochromatic) in the time domain]{Effect of \ac{AWGN} on a signal (blue, here monochromatic) in the time domain. The resulting signal with the \ac{AWGN} is red.}
\end{figure}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\draw[-latex] (-3.2,0) -- (3.2,0) node[below, align=center]{$\Re$};
		\draw[-latex] (0,-3.2) -- (0,3.2) node[left, align=right]{$\Im$};
		\draw[blue, thick, dashed, -latex] (0:0) -- (60:2);
		\begin{scope}[shift={(60:2)}]
			\draw[brown, dashed] (0:0.4) arc(0:360:0.4);
			\draw[brown, dashed] (0:0.8) arc(0:360:0.8);
			\draw[brown, dashed] (0:1.2) arc(0:360:1.2);
			\draw[brown] (20:0.4) -- (20:2) node[right, align=left]{$\sigma$};
			\draw[brown] (45:0.8) -- (45:2.5) node[right, align=left]{$2 \sigma$};
			\draw[brown] (70:1.2) -- (70:3) node[right, align=left]{$3 \sigma$};
			\draw[brown, thick, -latex] (0:0) -- (130:0.5) node[anchor=east](W){};
		\end{scope}
		\draw[red, thick, -latex] (0,0) -- (W.east);
	\end{tikzpicture}
	\caption[Effect of AWGN on the phasor of a monochromatic signal (in the frequency domain)]{Effect of \ac{AWGN} (brown) on the phasor of a monochromatic signal (blue, in the frequency domain). The resulting signal with the \ac{AWGN} is red.}
\end{figure}

\subsection{Thermal Noise and Noise Floor}

The most important noise in electric circuits is \index{thermal noise} \textbf{thermal noise}.
\begin{itemize}
	\item Thermal noise is the corollary of oscillating atoms and molecules at the temperature $T$.
	\item The oscillation amplitude increases with increasing temperature. Consequently, the noise increases.
\end{itemize}

The noise \ac{PSD} $\mathrm{S}_{NN}$ is:
\begin{equation}
	\mathrm{S}_{NN}(\omega) = \frac{1}{2\pi} k_B T
\end{equation}
where $k_B = \SI{1.380649}{J/K}$ is the Boltzmann's constant. Or, for frequency instead of angular frequency:
\begin{equation}
	\mathrm{S}_{NN}(f) = k_B T
\end{equation}

\begin{itemize}
	\item When the thermal noise is band-limited, it has nearly a Gaussian or normal distribution. It is \ac{AWGN}.
	\item The noise has a finite power when it is band-limited.
\end{itemize}
The noise power of the band-limited thermal noise is
\begin{equation}
	\begin{split}
		P_N &= \int\limits_{\omega_1}^{\omega_2} \mathrm{S}_{NN} \; \mathrm{d} \omega \\
		 &= \frac{1}{2\pi} k_B T \underbrace{\left(\omega_2 - \omega_1\right)}_{= \Delta \omega} \\
		 &= k_B T \underbrace{\frac{\Delta \omega}{2\pi}}_{= \Delta f} \\
		 &= k_B T \Delta f
	\end{split}
\end{equation}
where $\Delta f$ is the \index{noise bandwidth} \textbf{noise bandwidth} in \si{Hz}.

\begin{excursus}{Noise in voltages and currents}
	The noise power is converted to a voltage or current, respectively, if it appears at an ohmic resistance.
	\begin{figure}[H]
		\centering
		\begin{circuitikz}
			\begin{scope}[shift={(0,0)}]
				\draw (0,0) to[R,l=$R$,o-o] ++(0,4);
				\node[align=center] at(0,-1) {Noisy\\ resistor};
			\end{scope}
			\begin{scope}[shift={(3,0)}]
				\draw (0,0) to[R,l=$R$,o-] ++(0,2) to[european voltage source,v={$U_{N,RMS}$},-o] ++(0,2);
				\node[align=center] at(0,-1) {Noise-free resistor\\ and noise\\ voltage source};
			\end{scope}
			\begin{scope}[shift={(6,0)}]
				\draw (3,0) to[short,o-] (0,0) to[european current source,i={$I_{N,RMS}$}] (0,4) to[short,-o] (3,4);
				\draw (2,0) to[R,l=$R$,*-*] (2,4);
				\node[align=center] at(1.5,-1) {Noise-free resistor\\ and noise current source};
			\end{scope}
		\end{circuitikz}
		\caption{Three equivalent circuits}
	\end{figure}

	Ohmic resistances are always noisy. They can be converted to an equivalent circuit:
	\begin{itemize}
		\item ideal noise-free resistor with noise voltage source, or
		\item ideal noise-free resistor with noise current source.
	\end{itemize}

	Let's consider the first equivalent circuit.
	\begin{figure}[H]
		\centering
		\begin{circuitikz}
				\draw (0,0) to[R,l=$R$,o-] ++(0,2) to[european voltage source,v={$U_{N,RMS}$},-o] ++(0,2);
				\draw (0,0) to[short] (2,0) to[R,l=$R$] (2,4) to[short] (0,4);
		\end{circuitikz}
		\caption{The maximum power is transferred to a load of the same impedance as the inner resistance.}
	\end{figure}
	A load is connected to the noise source. To obtain a maximum power transfer, the load's impedance must equal the inner resistance of the source. The power emitted by the voltage source is:
	\begin{equation}
		P_N = \frac{U_{N,RMS}^2}{4 R}
	\end{equation}
	The noise voltage is:
	\begin{equation}
		U_{N,RMS} = \sqrt{4 k_B T \Delta f R}
	\end{equation}
	
	Analogue to the voltage, the noise current is:
	\begin{equation}
		I_{N,RMS} = \sqrt{\frac{4 k_B T \Delta f}{R}}
	\end{equation}
\end{excursus}

\paragraph{Noise Floor.}

The noise \ac{PSD} is small compared to the signals carrying information. Therefore, the logarithmic scale is used.

The noise \ac{PSD} level is
\begin{equation}
	L_{S,N} = \SI{10}{dBm/Hz} \log_{10} \left(\frac{k_B T}{\SI{1}{mW/Hz}}\right)
\end{equation}

\begin{itemize}
	\item The noise power is equally distributed over the frequency.
	\item Therefore, the \ac{PSD} is flat in the frequency domain, which is called \index{noise floor} \textbf{noise floor}.
\end{itemize}

\begin{fact}
	The noise \ac{PSD} or noise floor at room temperature (\SI{25}{\degreeCelsius} or $T = \SI{298.15}{K}$) is $L_{S,N} = \SI{-173.8}{dBm/Hz} \approx \SI{-174}{dBm/Hz}$.
\end{fact}

Band-limiting the noise, yields the noise power. The noise power is:
\begin{equation}
	\begin{split}
		L_{P,N} &= \SI{10}{dBm} \log_{10} \left(\frac{k_B T \Delta f}{\SI{1}{mW}}\right) \\
		 &= L_{S,N} + \SI{10}{dBHz} \log_{10} \left(\frac{\Delta f}{\SI{1}{Hz}}\right)
	\end{split}
\end{equation}

Here, the advantage of the logarithmic scale comes into play. For example, a \ac{LTE} signal with a bandwidth of $\Delta f_{LTE} = \SI{20}{MHz}$ has a noise power of $\SI{-174}{dBm/Hz} + \SI{73}{dBHz} = \SI{-101}{dBm}$.

\subsection{Signal-to-Noise Ratio and Noise Figure}

\paragraph {The Signal-to-Noise Ratio.}

Following scenario:
\begin{itemize}
	\item There is a signal at a frequency $\omega_0$ with a \ac{PSD} of $L_{S,X1}$ (for example indefinitely small peak $L_{S,X1} = \SI{-10}{dBm/Hz}$).
	\item The noise floor is the thermal noise $L_{S,N1}$ (for example $L_{S,N1} = \SI{-174}{dBm/Hz}$).
	\item The bandwidth considered is $\Delta f$ (for example $\Delta f = \SI{20}{MHz}$).
\end{itemize}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\draw[-latex] (-0.5,0) -- (5,0) node[below, align=center]{$f$\\ in $\si{Hz}$};
		\draw[-latex] (0,-10) -- (0,1) node[left, align=right]{$S(f)$\\ in $\si{dBm/Hz}$};
		
		\draw (2,0) -- ++(0,-0.1) node[below right, align=left]{$\omega_0$};
		
		\draw (0,-8.7) -- ++(-0.1,0) node[left, align=right]{$-174$};
		\draw (0,-0.5) -- ++(-0.1,0) node[left, align=right]{$-10$};
		
		\draw[red, thick] (0,-8.7) -- ++(5,0) node[above left, align=right]{Noise floor};
		\draw[blue, thick, -o] (2,-8.7) -- (2,-0.5) node[below right, align=left]{Signal};
	\end{tikzpicture}
	\caption[A signal including the AWGN]{A signal including the \ac{AWGN}}
\end{figure}

The noise power (level) is:
\begin{equation}
	\begin{split}
		P_{N1} &= \SI{1}{mW/Hz} 10^{\frac{L_{S,N1}}{\SI{10}{dBm/Hz}}} \cdot \Delta f \\
		L_{P,N1} &= L_{S,N1} + \SI{10}{dBHz} \log_{10} \left(\frac{\Delta f}{\SI{1}{Hz}}\right)
	\end{split}
\end{equation}
In this example, $L_{P,N1} = \SI{-101}{dBm}$.

The signal power is obtained by integrating the signal \ac{PSD} over the bandwidth:
\begin{equation}
	P_{X1} = \int\limits_{\Delta f} S_{XX}(\omega) \; \mathrm{d} \omega
\end{equation}

The signal \ac{PSD} in this example is:
\begin{equation*}
	S_{XX}(\omega) = \delta(\omega \pm \omega_0) \SI{1}{mW/Hz} 10^{\frac{L_{S,X1}}{\SI{10}{dBm/Hz}}}
\end{equation*}
In this example $P_{X1} \equiv L_{P,X1} = \SI{-10}{dBm}$.

\textit{Note:} the signal is just a indefinite small peak (Dirac delta function). All of its power is concentrated in its peak, so that the bandwidth does not matter. This signal does not exist in practise, but this is just an exemplary consideration.

\begin{definition}{Signal-to-noise ratio}
	The \index{signal-to-noise ratio} \textbf{\ac{SNR}} is the ratio between the signal power $P_{X}$ and the noise power $P_{N}$:
	\begin{equation}
		\mathrm{SNR} = \frac{P_{X}}{P_{N}}
	\end{equation}%
	\nomenclature[Ss]{$\mathrm{SNR}$}{Signal-to-noise ratio}
	
	Or in logarithmic scale
	\begin{equation}
		L_{\mathrm{SNR}} = \SI{10}{dB} \log_{10} \left(\frac{P_{X}}{P_{N}}\right) = L_{P,X} - L_{P,N}
	\end{equation}
\end{definition}

In this example, the \ac{SNR} is $L_{\mathrm{SNR},1} = \SI{91}{dB}$.

Often, the noise floor is defined to be \SI{91}{dBc}, which means that the noise is \SI{91}{dB} below the \index{carrier} \emph{carrier} -- the signal carrying the information.

\paragraph{\ac{SNR} Degradation.}

The signal including the \ac{AWGN} is applied to a system with a \index{gain} \textbf{gain} $G$.

Gain in logarithmic scale:
\begin{equation}
	L_G = \SI{10}{dB} \log_{10} \left(G\right)
\end{equation}

\begin{itemize}
	\item Positive log. gain $L_G > 0$ ($G > 1$): amplifier
	\item Negative log. gain $L_G < 0$ ($0 \leq G < 1$): attenuator
\end{itemize}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\node[draw, block](Sys){System\\ (gain $G$,\\ noise factor $F$)};
		
		\draw[-o] (Sys.west) -- ++(-2,0) node[left, align=right]{Input\\ $P_{X1} + P_{N1}$};
		\draw[-o] (Sys.east) -- ++(2,0) node[right, align=left]{Output\\ $P_{X2} + P_{N2}$};
	\end{tikzpicture}
	\caption[A system with gain degrading the SNR]{A system with gain degrading the \ac{SNR}}
\end{figure}

The system
\begin{itemize}
	\item amplifies or attenuates \underline{both} the signal \underline{and} the noise, and
	\item adds intrinsic \ac{AWGN}.
\end{itemize}

The intrinsic \ac{AWGN} is thermal noise generated inside the system. This additional noise contribution shows up as an additional increase of the noise floor by a factor $F$ -- the \index{noise factor} \textbf{noise factor}. Or in logarithmic scale:
\begin{equation}
	L_F = \SI{10}{dB} \log_{10} \left(F\right)
\end{equation}

\begin{itemize}
	\item Amplification or attenuation of the signal:
	\begin{itemize}
		\item Linear scale: $P_{X2} = G P_{X1}$
		\item Logarithmic scale: $L_{P,X2} = L_{P,X1} + L_G$
	\end{itemize}
	\item Amplification or attenuation of the noise \underline{plus} intrinsic noise contribution:
	\begin{itemize}
		\item Linear scale: $P_{N2} = G F P_{N1}$
		\item Logarithmic scale: $L_{P,N2} = L_{P,N1} + L_G + L_F$
	\end{itemize}
\end{itemize}

The additional contribution of \ac{AWGN}, degrades the \ac{SNR} by $L_F$.

\begin{definition}{Noise figure and noise factor}
	The \index{noise factor} \textbf{noise factor} $F$ is the ratio of input \ac{SNR} $\mathrm{SNR}_i$ to output \ac{SNR} $\mathrm{SNR}_o$.
	\begin{equation}
		F = \frac{\mathrm{SNR}_i}{\mathrm{SNR}_o}
	\end{equation}
	
	In logarithmic scale, the ratio is expressed by the \index{noise figure} \textbf{noise figure} $L_F$.
	\begin{equation}
		L_F = \SI{10}{dB} \log_{10} \left(F\right) = L_{\mathrm{SNR},i} - L_{\mathrm{SNR},o}
	\end{equation}
\end{definition}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{scope}[shift={(0,0)}]
			\draw[-latex] (-0.5,0) -- (5,0) node[below, align=center]{$f$\\ in $\si{Hz}$};
			\draw[-latex] (0,-10) -- (0,1.5) node[left, align=right]{$S(f)$\\ in $\si{dBm/Hz}$};
			
			\draw (2,0) -- ++(0,-0.1) node[below right, align=left]{$\omega_0$};
			
			\draw (0,-8.7) -- ++(-0.1,0) node[left, align=right]{$-174$};
			\draw (0,-0.5) -- ++(-0.1,0) node[left, align=right]{$-10$};
			
			\draw[red, thick] (0,-8.7) -- ++(5,0) node[above left, align=right](N1){Noise floor};
			\draw[blue, thick, -o] (2,-8.7) -- (2,-0.5) node[below right, align=left](X1){Signal};
		\end{scope}
		\begin{scope}[shift={(8,0)}]
			\draw[-latex] (-0.5,0) -- (5,0) node[below, align=center]{$f$\\ in $\si{Hz}$};
			\draw[-latex] (0,-10) -- (0,1.5) node[left, align=right]{$S(f)$\\ in $\si{dBm/Hz}$};
			
			\draw (2,0) -- ++(0,-0.1) node[below right, align=left]{$\omega_0$};
			
			\draw (0,-8.7) -- ++(-0.1,0) node[left, align=right]{$-174$};
			\draw (0,-7.7) -- ++(-0.1,0) node[left, align=right]{$-154$};
			\draw (0,-7.2) -- ++(-0.1,0) node[left, align=right]{$-144$};
			\draw (0,-0.5) -- ++(-0.1,0) node[left, align=right]{$-10$};
			\draw (0,0.5) -- ++(-0.1,0) node[left, align=right]{$+10$};
			
			\draw[red, dashed] (0,-7.7) -- ++(5,0) node[below left, align=right](Ng){Noise (gain only)};
			\draw[red, thick] (0,-7.2) -- ++(5,0) node[above left, align=right](N2){Noise floor};
			\draw[blue, thick, -o] (2,-7.2) -- (2,0.5) node[above right, align=left](X2){Signal};
		\end{scope}
		\begin{scope}[shift={(6,0)}]
			\draw (-0.5,-8.7) -- (0.5,-8.7);
			\draw[<->] (0,-8.7) -- (0,-7.7) node[midway, left, align=right]{$L_G$};
			\draw (-0.5,-7.7) -- (0.5,-7.7);
			\draw[<->] (0,-7.7) -- (0,-7.2) node[midway, left, align=right]{$L_F$};
			\draw (-0.5,-7.2) -- (0.5,-7.2);
			\draw (-0.5,-0.5) -- (0.5,-0.5);
			\draw[<->] (0,-0.5) -- (0,0.5) node[midway, left, align=right]{$L_G$};
			\draw (-0.5,0.5) -- (0.5,0.5);
		\end{scope}
	\end{tikzpicture}
	\caption[Degradation of the SNR]{Degradation of the \ac{SNR}}
\end{figure}

In our example:
\begin{itemize}
	\item System properties:
	\begin{itemize}
		\item Gain $L_G = \SI{20}{dB}$
		\item Noise figure $L_F = \SI{10}{dB}$
	\end{itemize}
	\item Output signal power $L_{X2} = \SI{+10}{dBm}$
	\item Output noise power $L_{X2} = \SI{-71}{dBm}$ ($\SI{-144}{dBm/Hz}$ at $\SI{20}{MHz}$)
	\item \ac{SNR} $L_{\mathrm{SNR},o} = \SI{81}{dB}$
\end{itemize}

\paragraph{Cascading Systems.}

In a cascade of systems, the gain $G$ and noise factor $F$ must be applied several times.

\begin{definition}{Friis formula}
	The total noise factor of a chain of $n$ devices can be calculated by the \index{Friis formula} \textbf{Friis formula}.
	\begin{equation}
		F_{\text{total}} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \frac{F_4 - 1}{G_1 G_2 G_3} + \dots + \frac{F_n - 1}{G_1 G_2 \dots G_{n-1}}
	\end{equation}
	$F$ and $G$ are in linear scale (not logarithmic scale).
	
	\begin{figure}[H]
		\centering
		\begin{adjustbox}{scale=0.8}
			\begin{tikzpicture}
				\node[draw, block](S1){System\\ ($G_1$, $F_1$)};
				\node[draw, block,right=of S1](S2){System\\ ($G_2$, $F_2$)};
				\node[block,right=of S2](Sd){$\dots$};
				\node[draw, block,right=of Sd](Sn){System\\ ($G_n$, $F_n$)};
				
				\draw[latex-] (S1.west) -- ++(-1,0) node[left, align=right]{Source};
				\draw[-latex] (S1.east) -- (S2.west);
				\draw[-latex] (S2.east) -- (Sd.west);
				\draw[-latex] (Sd.east) -- (Sn.west);
				\draw[-latex] (Sn.east) -- ++(1,0) node[right, align=left]{Output};
				
				\draw[decorate, decoration={brace, amplitude=3mm, mirror}] (S1.south west) -- (Sn.south east) node[midway, anchor=north, yshift=-4mm]{$G_{\text{total}}$, $F_{\text{total}}$};
			\end{tikzpicture}
		\end{adjustbox}
	\end{figure}
\end{definition}

\textit{Remark:} The total chain gain is:
\begin{equation}
	G_{\text{total}} = G_1 G_2 \dots G_n = \prod_{i = 1}^{n} G_i
\end{equation}

\phantomsection
\addcontentsline{toc}{section}{References}
\printbibliography[heading=subbibliography]
\end{refsection}