summaryrefslogtreecommitdiff
path: root/chapter04/content_ch04.tex
blob: 3511a6466b58ecb3e7abb79aec15e7a93b799108 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
\chapter{Sampling and Time-Discrete Signals and Systems}

\begin{refsection}

\section{Time-Discrete Signals}

\subsection{Ideal Sampling}

% TODO
\begin{equation}
	\begin{split}
		\underline{x}[n] &= \int\limits_{-\infty}^{\infty} \underline{x}(t) \cdot \delta\left(t - n T_S\right) \, \mathrm{d} t \\
		 &= \underline{x}\left(n T_S\right)
	\end{split}
\end{equation}

\subsection{Discrete-Time Fourier Transform}

% TODO
\begin{equation}
	\underline{x}_S(t) = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot \delta(t - n T_S)
\end{equation}

\begin{equation}
	\begin{split}
		\underline{X}_S \left(j \omega\right) &= \mathcal{F} \left\{\underline{x}_S(t)\right\} \\
		 &= \mathcal{F} \left\{\sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot \delta(t - n T_S)\right\} \\
		 &= \int\limits_{t = -\infty}^{\infty} \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot \delta(t - n T_S) \cdot e^{-j \omega t} \, \mathrm{d} t \\
		 &= \sum\limits_{n = -\infty}^{\infty} \int\limits_{t = -\infty}^{\infty} \underline{x}[n] \cdot \delta(t - n T_S) \cdot e^{-j \omega t} \, \mathrm{d} t \\
		 &= \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{-j \omega n T_S}
	\end{split}
\end{equation}

Redefining $\phi = T_S \omega$:
\begin{equation}
	\underline{X}_S \left(j \omega\right) = \underline{X} \left(e^{j \phi}\right) = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{-j \phi n}
\end{equation}

\subsection{Sampling Theorem and Aliasing}

\subsection{Discrete Fourier Transform}

\section{Analogies Of Time-Continuous and Time-Discrete Signals and Systems}

\subsection{Transforms}

\begin{table}[H]
	\centering
	\begin{tabular}{|p{0.3\linewidth}||p{0.3\linewidth}|p{0.3\linewidth}|}
		\hline
		{} & \textbf{Frequency-Continuous Domain} & \textbf{Frequency-Discrete Domain} \\
		\hline
		\hline
		\textbf{Time-Continuous Domain} & Fourier transform & Fourier series \\
		\hline
		\textbf{Time-Discrete Domain} & Discrete-Time Fourier transform & Discrete Fourier transform \\
		\hline
	\end{tabular}
\end{table}

\subsubsection{Obtaining a frequency-continuous domain:}

\begin{minipage}{0.45\linewidth}
	\textbf{From the time-continuous domain (analog signal):}
	
	\vspace{0.5em}
	
	Fourier transform:
	\begin{equation*}
		\underline{X}(j \omega) = \int\limits_{t = -\infty}^{\infty} \underline{x}(t) \cdot e^{-j \omega t} \, \mathrm{d} t
	\end{equation*}
	
	Inverse Fourier transform:
	\begin{equation*}
		\underline{x}(t) = \frac{1}{2 \pi} \int\limits_{\omega = -\infty}^{\infty} \underline{X}(j \omega) \cdot e^{+ j \omega t} \, \mathrm{d} \omega
	\end{equation*}
	
	\begin{itemize}
		\item Continuous time: $t \in \mathbb{R}$
		\item Continuous frequency: $\omega \in \mathbb{R}$
	\end{itemize}
\end{minipage}
\hfill
\begin{minipage}{0.45\linewidth}
	\textbf{From the time-discrete domain (digital signal):}
	
	\vspace{0.5em}
	
	Discrete-time Fourier transform:
	\begin{equation*}
		\underline{X}_{2\pi}(e^{j \phi}) = \sum\limits_{n = -\infty}^{\infty} \underline{x}[n] \cdot e^{- j \phi n}
	\end{equation*}
	
	Inverse discrete-time Fourier transform:
	\begin{equation*}
		\underline{x}[n] = \frac{1}{2 \pi} \int\limits_{- \pi}^{+ \pi} \underline{X}_{2\pi}(e^{j \phi}) \cdot e^{+ j \phi n} \, \mathrm{d} \phi
	\end{equation*}
	
	\begin{itemize}
		\item Discrete time: $n \in \mathbb{Z}$
		\item Continuous frequency: $\phi \in \mathbb{R}$
	\end{itemize}
\end{minipage}

\subsubsection{Obtaining a frequency-discrete domain:}

\begin{minipage}{0.45\linewidth}
	\textbf{From the time-continuous domain (analog signal):}
	
	\vspace{0.5em}
	
	Fourier analysis:
	\begin{equation*}
		\underline{X}[k] = \frac{\omega_0}{2 \pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \underline{x}(t) \cdot e^{-j k \omega_0 t} \, \mathrm{d} t
	\end{equation*}
	
	Fourier series:
	\begin{equation*}
		\underline{x}(t) = \sum\limits_{k = -\infty}^{\infty} \underline{X}[k] \cdot e^{+ j k \omega_0 t}
	\end{equation*}
	
	\begin{itemize}
		\item Continuous time: $t \in \mathbb{R}$
		\item Discrete frequency: $k \in \mathbb{Z}$
	\end{itemize}
\end{minipage}
\hfill
\begin{minipage}{0.45\linewidth}
	\textbf{From the time-discrete domain (digital signal):}
	
	\vspace{0.5em}
	
	Discrete Fourier transform:
	\begin{equation*}
		\underline{X}[k] = \sum\limits_{n = 0}^{N - 1} \underline{x}[n] \cdot e^{- j \frac{2 \pi}{N} k n}
	\end{equation*}
	
	Inverse discrete Fourier transform:
	\begin{equation*}
		\underline{x}[n] = \frac{1}{N} \sum\limits_{k = 0}^{N - 1} \underline{X}[k]  \cdot e^{+ j \frac{2 \pi}{N} k n}
	\end{equation*}
	
	\begin{itemize}
		\item Discrete time: $n \in \mathbb{Z}$
		\item Discrete frequency: $k \in \mathbb{Z}$
	\end{itemize}
\end{minipage}

\subsection{Systems}

\subsection{Cross-Correlation and Autocorrelation}

\subsection{Spectral Density}

\subsection{Noise}

\section{Digital Signals and Systems}

\subsection{Quantization}

\subsection{Quantization Error}

\subsection{Window Filters}

\subsection{Time Recovery}

\subsection{Practical Issues}

\phantomsection
\addcontentsline{toc}{section}{References}
\printbibliography[heading=subbibliography]
\end{refsection}