1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
|
% SPDX-License-Identifier: CC-BY-SA-4.0
%
% Copyright (c) 2020 Philipp Le
%
% Except where otherwise noted, this work is licensed under a
% Creative Commons Attribution-ShareAlike 4.0 License.
%
% Please find the full copy of the licence at:
% https://creativecommons.org/licenses/by-sa/4.0/legalcode
\chapter{Modulation and Mixing}
\begin{refsection}
The task of a communication system is transmitting information.
Example: Voice transmission
\begin{itemize}
\item Voice has a spectrum from about \SI{20}{Hz} to \SI{20}{kHz}
\item It is not feasible to transmit the spectrum directly as electromagnetic waves.
\item The electromagnetic spectrum must be shared with myriads of other users.
\item So, the voice is shifted to a higher frequency, for example, \SI{144.3}{MHz}.
\item The voice is \emph{modulated} on this \emph{carrier} of \SI{144.3}{MHz}.
\item The voice is then located from about \SI{144.28}{MHz} to \SI{144.32}{MHz}.
\end{itemize}
\begin{definition}{Modulation}
\index{modulation} \textbf{Modulation} is the process of altering a signal -- the \index{carrier} \textbf{carrier} -- so that it contains the information to be transmitted.
\end{definition}
\begin{definition}{Demodulation}
\index{demodulation} \textbf{Demodulation} is the inverse process of modulation. The information is extracted from the carrier.
\end{definition}
In the previous example, the voice was the information-carrying signal. This can be transferred to any kind of information. In this chapter, we will discuss techniques to modulate data on carriers which can be transmitted over wired and wireless channels.
\todo{Block diagram modulator}
\section{Modulation in The Time and Frequency Domain}
Generally, the carrier is a \emph{monochromatic} signal, i.e., it is a sinusoidal function. A sinusoidal function has three parameters: (angular) frequency $\omega_C$, phase $\varphi_C$ and amplitude $\hat{X}_C$.
\begin{equation}
x_C(t) = \hat{X}_C \cos\left(\omega_C t + \varphi_C\right)
\label{eq:ch05:carrier_timedomain}
\end{equation}
The frequency is fixed to the carrier frequency. The other two parameters can be altered and the information can be modulated into them.
There are two classes of modulation:
\begin{itemize}
\item \textbf{Amplitude modulation} The amplitude of the carrier is altered.
\begin{equation}
x_{S,AM}(t) = f_{\hat{X}}(t) \cos\left(\omega_C t + \varphi_C\right)
\end{equation}
\item \textbf{Phase modulation} The phase of the carrier is altered.
\begin{equation}
x_{S,PM}(t) = \hat{X}_C \cos\left(\omega_C t + f_{\varphi}(t)\right)
\end{equation}
\end{itemize}
This section covers basic modulation techniques of analogue signals.
\begin{itemize}
\item The considerations are explanatory and are extended to digital signals in the following section.
\item This section shall offer an understanding of how modulation works in general (for both analogue and digital signals).
\item A digital signal must be converted to an analogue signal in order to physically exists. It can then be modulated onto a carrier and transmitted as an electromagnetic wave.
\end{itemize}
\subsection{Amplitude Modulation}
The \index{amplitude modulation} \textbf{\ac{AM}} is the alteration of the carrier's amplitude.
\begin{attention}
By now, all signals are real, because the technical realization is considered. Physical signals must always be real.
\end{attention}
The carrier is a mono-chromatic signal:
\begin{equation}
x_C(t) = \hat{X}_C \cdot \cos\left(2\pi f_C + \varphi_C\right)
\end{equation}
where
\begin{itemize}
\item $\hat{X}_C$ is the amplitude of the carrier,
\item $f_C$ is the carrier frequency ($2\pi f_C = \omega_C$ is carrier angular frequency), and
\item $\varphi_C$ is the phase offset of the carrier.
\end{itemize}
The carrier amplitude can be altered by multiplying it with the instantaneous value of the information-carrying signal $x_B(t)$:
\begin{equation}
x_{DSB-TC}(t) = x_B(t) \cdot \left(1 + \mu x_C(t)\right)
\label{eq:ch05:amdsb_timedomain}
\end{equation}
\begin{itemize}
\item The waveform of the carrier is retained. The carrier is still present in the modulated signal. This is represented by the $+1$ in the sum.
\item Its amplitude is changed by the instantaneous value of the information-carrying signal. The contribution of the information-carrying signal is defined by the factor $\mu$.
\end{itemize}
\begin{figure}[H]
\centering
\subfloat[Carrier and information-carrying signals]{
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.15\textheight},
width=0.6\linewidth,
scale only axis,
xlabel={$t$},
ylabel={$x(t)$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=outer north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=-0.5,
xmax=8.5,
ymin=-1.2,
ymax=1.2,
%xtick={0,0.125,...,1},
%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
%ytick={0},
]
\addplot[blue, smooth, domain=0:8, samples=200] plot(\x, {cos(deg(2*pi*2*\x))});
\addlegendentry{Carrier $x_C(t)$};
\addplot[red, smooth, domain=0:8, samples=50] plot(\x, {cos(deg(2*pi*0.25*\x))});
\addlegendentry{Information $x_B(t)$};
\end{axis}
\end{tikzpicture}
}
\subfloat[\acs{DSB-TC} \acs{AM} (with carrier)]{
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.15\textheight},
width=0.6\linewidth,
scale only axis,
xlabel={$t$},
ylabel={$x_{DSB-TC}(t)$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=outer north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=-0.5,
xmax=8.5,
ymin=-1.7,
ymax=1.7,
%xtick={0,0.125,...,1},
%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
%ytick={0},
]
\addplot[red, smooth, domain=0:8, samples=150] plot(\x, {cos(deg(2*pi*2*\x)) * (1+0.5*cos(deg(2*pi*0.25*\x)))});
\addlegendentry{\acs{DSB} Signal $x_{DSB-TC}(t)$};
\addplot[olive, dashed, smooth, domain=0:8, samples=150] plot(\x, {(1+0.5*cos(deg(2*pi*0.25*\x)))});
\addlegendentry{Envelope of $x_B(t)$};
\end{axis}
\end{tikzpicture}
}
\caption{\acs{DSB} \acs{AM} of analogue signals}
\end{figure}
\subsubsection{Frequency Domain}
Assumptions for the information-carrying signal:
\begin{itemize}
\item The information-carrying signal is band-limited to $-f_B \geq f \geq f_B$ ($\underline{X}_B\left(j\omega\right) = 0 \quad \forall \; |f| > f_B$).
\item The information-carrying signal is real-valued. Its spectrum is therefore symmetric ($\underline{X}_B\left(j\omega\right) = \overline{\underline{X}_B\left(-j\omega\right)}$).
\end{itemize}
The carrier is monochromatic \eqref{eq:ch05:carrier_timedomain}. Its \ac{CTFT} is:
\begin{equation}
\underline{X}_C\left(j\omega\right) = \hat{X}_C \pi \left( \delta\left(\omega + 2 \pi f_C \right) + \delta\left(\omega - 2 \pi f_C \right) \right)
\end{equation}
The time-domain expression \eqref{eq:ch05:amdsb_timedomain} of the \ac{AM} is in the frequency domain:
\begin{equation}
\underline{X}_{DSB-TC}\left(j\omega\right) = \underline{X}_C\left(j\omega\right) + \mu \underline{X}_C\left(j\omega\right) * \underline{X}_B\left(j\omega\right)
\end{equation}
The multiplication becomes a convolution.
\begin{equation}
\underline{X}_{DSB-TC}\left(j\omega\right) = \hat{X}_C \pi \left( \underbrace{\delta\left(\omega + 2 \pi f_C \right) + \mu \underline{X}_B\left(j\left(\omega + 2 \pi f_C\right)\right)}_{\text{Carrier plus frequency-shifted information (-)}} + \underbrace{\delta\left(\omega - 2 \pi f_C \right) + \mu \underline{X}_B\left(j\left(\omega - 2 \pi f_C\right)\right)}_{\text{Carrier plus frequency-shifted information (+)}} \right)
\end{equation}
\textbf{The \ac{AM} is a frequency shift of the information-carrying in both the positive and the negative direction.}
Due to the symmetry of the information-carrying signal, there is an \emph{upper sideband} and a \emph{lower sideband}, carrying the identical information, around the carrier.
Because of the presence of the carrier and both sidebands, the modulation is called \index{double-sideband!transmitted carrier} \textbf{\acf{DSB-TC}}.
\begin{definition}{Transmission bandwidth of \acs{DSB} \acs{AM}}
The modulated signal of the \acs{DSB} \acs{AM} consists of the positive and negative part of the information-carrying signal shifted in frequency to the carrier frequency. The information-carrying signal emerges as sidebands.
Therefore, the bandwidth of the modulated signal is $[\omega_C - \omega_B, \omega_C + \omega_B]$. The difference $2 \omega_B$ is called \index{transmission bandwidth} \textbf{transmission bandwidth}.
\end{definition}
\begin{fact}
The transmission bandwidth of \acs{DSB} \acs{AM} is the double of the maximum frequency in the information-carrying signal $2 \omega_B$.
\end{fact}
\begin{figure}[H]
\subfloat[Information-carrying signal $\underline{X}_B\left(j\omega\right)$ (real-valued in time-domain)] {
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.15\textheight},
width=0.9\linewidth,
scale only axis,
xlabel={$\omega$},
ylabel={$|\underline{X}_B\left(j\omega\right)|$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=-3.5,
xmax=3.5,
ymin=0,
ymax=1.2,
xtick={-0.5, 0, 0.5},
xticklabels={$- \omega_B$, $0$, $\omega_B$},
ytick={0},
]
\draw[red, thick] (axis cs:-0.5,0) -- (axis cs:0,0.7);
\draw[red, thick] (axis cs:0,0.7) -- (axis cs:0.5,0);
\end{axis}
\end{tikzpicture}
}
\subfloat[Carrier signal $\underline{X}_C\left(j\omega\right)$ (real-valued in time-domain)] {
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.15\textheight},
width=0.9\linewidth,
scale only axis,
xlabel={$\omega$},
ylabel={$|\underline{X}_C\left(j\omega\right)|$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=-3.5,
xmax=3.5,
ymin=0,
ymax=1.2,
xtick={-2, 0, 2},
xticklabels={$- \omega_C$, $0$, $\omega_C$},
ytick={0},
]
\pgfplotsinvokeforeach{-2, 2}{
\draw[-latex, blue, very thick] (axis cs:#1,0) -- (axis cs:#1,1);
}
\end{axis}
\end{tikzpicture}
}
\subfloat[\acs{AM} \acs{DSB-TC} modulated signal $\underline{X}_{DSB-TC}\left(j\omega\right)$ with frequency-shifted information and carrier (real-valued in time-domain)] {
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.15\textheight},
width=0.9\linewidth,
scale only axis,
xlabel={$\omega$},
ylabel={$|\underline{X}_{DSB-TC}\left(j\omega\right)|$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=-3.5,
xmax=3.5,
ymin=0,
ymax=1.2,
xtick={-2, 0, 2},
xticklabels={$- \omega_C$, $0$, $\omega_C$},
ytick={0},
]
\pgfplotsinvokeforeach{-2, 2}{
\draw[-latex, red, very thick] (axis cs:#1,0) -- (axis cs:#1,1);
\draw[red, thick] (axis cs:{#1-0.5},0) -- (axis cs:#1,0.7);
\draw[red, thick] (axis cs:#1,0.7) -- (axis cs:{#1+0.5},0);
}
\end{axis}
\end{tikzpicture}
}
\caption{Spectrum of the \acs{DSB-TC} \acs{AM} signal}
\end{figure}
\subsection{Carrier Suppression}
The carrier does not contain any information. It can therefore be removed from the modulated signal. The $+1$ of \eqref{eq:ch05:amdsb_timedomain} is dropped. The \ac{AM} becomes a simple multiplication.
\begin{equation}
x_{DSB-SC}(t) = x_B(t) \cdot x_C(t)
\label{eq:ch05:amdsbsc_timedomain}
\end{equation}
\begin{figure}[H]
\centering
\subfloat[Carrier and information-carrying signals]{
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.15\textheight},
width=0.6\linewidth,
scale only axis,
xlabel={$t$},
ylabel={$x(t)$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=outer north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=-0.5,
xmax=8.5,
ymin=-1.2,
ymax=1.2,
%xtick={0,0.125,...,1},
%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
%ytick={0},
]
\addplot[blue, smooth, domain=0:8, samples=200] plot(\x, {cos(deg(2*pi*2*\x))});
\addlegendentry{Carrier $x_C(t)$};
\addplot[red, smooth, domain=0:8, samples=50] plot(\x, {cos(deg(2*pi*0.25*\x))});
\addlegendentry{Information $x_B(t)$};
\end{axis}
\end{tikzpicture}
}
\subfloat[\acs{DSB-SC} \acs{AM} (carrier suppressed)]{
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.15\textheight},
width=0.6\linewidth,
scale only axis,
xlabel={$t$},
ylabel={$x_{DSB-SC}(t)$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=outer north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=-0.5,
xmax=8.5,
ymin=-1.2,
ymax=1.2,
%xtick={0,0.125,...,1},
%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
%ytick={0},
]
\addplot[red, smooth, domain=0:8, samples=150] plot(\x, {cos(deg(2*pi*2*\x)) * (cos(deg(2*pi*0.25*\x)))});
\addlegendentry{\acs{DSB-SC} Signal $x_{DSB-SC}(t)$};
\addplot[olive, dashed, smooth, domain=0:8, samples=150] plot(\x, {(cos(deg(2*pi*0.25*\x)))});
\addlegendentry{Envelope of $x_B(t)$};
\end{axis}
\end{tikzpicture}
}
\caption{\acs{DSB-SC} \acs{AM} of analogue signals}
\end{figure}
The multiplication in the time-domain becomes a convolution in the frequency domain:
\begin{equation}
\begin{split}
\underline{X}_{DSB-SC}\left(j\omega\right) &= \underline{X}_C\left(j\omega\right) * \underline{X}_B\left(j\omega\right) \\
&= \hat{X}_C \pi \left( \underbrace{\underline{X}_B\left(j\left(\omega + 2 \pi f_C\right)\right)}_{\text{Frequency-shifted information (-)}} + \underbrace{\underline{X}_B\left(j\left(\omega - 2 \pi f_C\right)\right)}_{\text{Frequency-shifted information (+)}} \right)
\end{split}
\end{equation}
The information-carrying signal is frequency-shifted in both positive and negative directions. It emerges as two sidebands at carrier frequency. However, the carrier is not present in the output signal. Therefore, the modulation is called \index{double-sideband!suppressed carrier} \textbf{\acf{DSB-SC}}.
Like the \ac{DSB-TC}, the transmission bandwidth of the \ac{DSB-SC} is $2 \omega_B$.
\begin{figure}[H]
\subfloat[Information-carrying signal $\underline{X}_B\left(j\omega\right)$ (real-valued in time-domain)] {
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.15\textheight},
width=0.9\linewidth,
scale only axis,
xlabel={$\omega$},
ylabel={$|\underline{X}_B\left(j\omega\right)|$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=-3.5,
xmax=3.5,
ymin=0,
ymax=1.2,
xtick={-0.5, 0, 0.5},
xticklabels={$- \omega_B$, $0$, $\omega_B$},
ytick={0},
]
\draw[red, thick] (axis cs:-0.5,0) -- (axis cs:0,0.7);
\draw[red, thick] (axis cs:0,0.7) -- (axis cs:0.5,0);
\end{axis}
\end{tikzpicture}
}
\subfloat[Carrier signal $\underline{X}_C\left(j\omega\right)$ (real-valued in time-domain)] {
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.15\textheight},
width=0.9\linewidth,
scale only axis,
xlabel={$\omega$},
ylabel={$|\underline{X}_C\left(j\omega\right)|$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=-3.5,
xmax=3.5,
ymin=0,
ymax=1.2,
xtick={-2, 0, 2},
xticklabels={$- \omega_C$, $0$, $\omega_C$},
ytick={0},
]
\pgfplotsinvokeforeach{-2, 2}{
\draw[-latex, blue, very thick] (axis cs:#1,0) -- (axis cs:#1,1);
}
\end{axis}
\end{tikzpicture}
}
\subfloat[\acs{AM} \acs{DSB} modulated signal $\underline{X}_{DSB}\left(j\omega\right)$ with frequency-shifted information (real-valued in time-domain). The carrier is suppressed.] {
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.15\textheight},
width=0.9\linewidth,
scale only axis,
xlabel={$\omega$},
ylabel={$|\underline{X}_{DSB}\left(j\omega\right)|$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=-3.5,
xmax=3.5,
ymin=0,
ymax=1.2,
xtick={-2, 0, 2},
xticklabels={$- \omega_C$, $0$, $\omega_C$},
ytick={0},
]
\pgfplotsinvokeforeach{-2, 2}{
\draw[red, thick] (axis cs:{#1-0.5},0) -- (axis cs:#1,0.7);
\draw[red, thick] (axis cs:#1,0.7) -- (axis cs:{#1+0.5},0);
}
\end{axis}
\end{tikzpicture}
}
\caption{Spectrum of the \acs{DSB-SC} \acs{AM} signal}
\end{figure}
\subsubsection{Sideband suppression}
\begin{itemize}
\item The two sidebands contain identical information.
\item Therefore, one sideband can be removed without losing information.
\item High-quality filters with steep slopes in the amplitude response may be used to suppress one the side bands.
\item The resulting \index{single-sideband} \textbf{\ac{SSB} \ac{AM}} is mainly used for analogue signals, which is out of the scope of this lecture.
\end{itemize}
\subsection{Phase Modulation}
\todo{Phase Modulation}
\section{Frequency mixer}
The information-carrying signal and the carrier are usually at different frequencies. A communication system must therefore be able to shift between multiple frequencies. Such communication systems are called \index{heterodyne} \textbf{heterodyne}.
\begin{itemize}
\item The modulation and demodulation happen at a low, near-zero frequency. The modulated signal is the \index{baseband signal} \textbf{baseband signal}.
\item A device called \index{mixer} \textbf{mixer} converts one frequency to another. The modulated information is kept intact.
\end{itemize}
\begin{figure}[H]
\centering
\subfloat[Heterodyne transmitter without \acs{IF} stage]{
\centering
\begin{adjustbox}{scale=0.8}
\begin{circuitikz}
\node[block, draw](Baseband){Baseband\\ modulation};
\node[mixer, right=2.5cm of Baseband](Mixer){};
\node[ampshape, right=4cm of Mixer](Amplifier){};
\draw (Mixer.south) node[below,align=center,yshift=-5mm]{Mixer};
\draw (Amplifier.south) node[below,align=center,yshift=-5mm]{\acs{RF}\\ amplifier};
\draw[-latex] (Baseband.east) -- node[midway,above,align=center]{Baseband\\ signal} (Mixer.west);
\draw[-latex] (Mixer.east) to[bandpass] ++(2cm,0) -- node[midway,above,align=center]{\acs{RF}\\ signal} (Amplifier.west);
\draw (Amplifier.east) to[bandpass] ++(2cm,0) -- ++(0,0) node[txantenna]{};
\end{circuitikz}
\end{adjustbox}
}
\subfloat[Heterodyne receiver without \acs{IF} stage]{
\centering
\begin{adjustbox}{scale=0.8}
\begin{circuitikz}
\node[ampshape](RFAmplifier){};
\node[mixer, right=2cm of RFAmplifier](Mixer){};
\node[ampshape, right=2.5cm of Mixer](BBAmplifier){};
\node[block, draw, right=2.5cm of BBAmplifier](Baseband){Baseband\\ demodulation};
\draw (RFAmplifier.south) node[below,align=center,yshift=-5mm]{\acs{RF}\\ amplifier};
\draw (Mixer.south) node[below,align=center,yshift=-5mm]{Mixer};
\draw (BBAmplifier.south) node[below,align=center,yshift=-5mm]{Baseband\\ amplifier};
\draw (RFAmplifier.west) to[bandpass] ++(-2cm,0) node[rxantenna,xscale=-1]{};
\draw[-latex] (RFAmplifier.east) -- node[midway,above,align=center]{\acs{RF}\\ signal} (Mixer.west);
\draw[-latex] (Mixer.east) to[bandpass] ++(2cm,0) -- (BBAmplifier.west);
\draw[-latex] (BBAmplifier.east) -- node[midway,above,align=center]{Baseband\\ signal} (Baseband.west);
\end{circuitikz}
\end{adjustbox}
}
\subfloat[Superheterodyne receiver]{
\centering
\begin{adjustbox}{scale=0.6}
\begin{circuitikz}
\node[ampshape](RFAmplifier){};
\node[mixer, right=2cm of RFAmplifier](RFMixer){};
\node[ampshape, right=2.5cm of RFMixer](IFAmplifier){};
\node[mixer, right=2cm of IFAmplifier](IFMixer){};
\node[ampshape, right=2.5cm of IFMixer](BBAmplifier){};
\node[block, draw, right=2.5cm of BBAmplifier](Baseband){Baseband\\ demodulation};
\draw (RFAmplifier.south) node[below,align=center,yshift=-5mm]{\acs{RF}\\ amplifier};
\draw (RFMixer.south) node[below,align=center,yshift=-5mm]{\acs{RF}\\ Mixer};
\draw (IFAmplifier.south) node[below,align=center,yshift=-5mm]{\acs{IF}\\ amplifier};
\draw (IFMixer.south) node[below,align=center,yshift=-5mm]{\acs{IF}\\ Mixer};
\draw (BBAmplifier.south) node[below,align=center,yshift=-5mm]{Baseband\\ amplifier};
\draw (RFAmplifier.west) to[bandpass] ++(-2cm,0) ++(0,0) node[rxantenna,xscale=-1]{};
\draw[-latex] (RFAmplifier.east) -- node[midway,above,align=center]{\acs{RF}\\ signal} (RFMixer.west);
\draw[-latex] (RFMixer.east) to[bandpass] ++(2cm,0) -- (IFAmplifier.west);
\draw[-latex] (IFAmplifier.east) -- node[midway,above,align=center]{\acs{IF}\\ signal} (IFMixer.west);
\draw[-latex] (IFMixer.east) to[bandpass] ++(2cm,0) -- (BBAmplifier.west);
\draw[-latex] (BBAmplifier.east) -- node[midway,above,align=center]{Baseband\\ signal} (Baseband.west);
\end{circuitikz}
\end{adjustbox}
}
\caption{A selection of heterodyne architectures}
\end{figure}
Definitions:
\begin{itemize}
\item The \index{radio-frequency signal} \textbf{\ac{RF} signal}: The \ac{RF} signal is the high-frequency signal transmitted as an electromagnetic wave. This is the frequency used for the communication over the wired or wireless channel.
\item The \index{baseband signal} \textbf{baseband signal}: The near-zero signal is processed by the modulator or demodulator. In digital communication system, this is the signal used by the digital signal processing. It is generated by a \ac{DAC} in a transmitter and digitized by an \ac{ADC} in a receiver.
\item The \index{intermediate-frequency signal} \textbf{\ac{IF} signal}: Both transmitter and receiver may optionally have an \ac{IF} stage. The \ac{IF} is usually fixed, so that high quality filters can be implemented to achieve good selectivity and high \ac{SNR}. The baseband is a special kind of \ac{IF} signal with an \ac{IF} of zero or close to zero.
\end{itemize}
\subsection{Mixing Principle}
A \emph{frequency mixer}, or in short \index{mixer} \textbf{mixer}, is a device which produces a new frequency from two input frequencies. The goal is a frequency shift of the input signal frequency to the desired output signal frequency.
\begin{figure}[H]
\centering
\begin{circuitikz}
\node[mixer](Mix){};
\node[oscillator,below=of Mix](LO){};
\draw (LO.south) node[below,align=center,yshift=-5mm]{\acs{LO}};
\draw[latex-o] (Mix.west) -- (-2cm,0) node[left,align=right]{Input\\ signal $x_i(t)$};
\draw[-latex] (Mix.east) -- (2cm,0) node[right,align=left]{Output\\ signal $x_o(t)$};
\draw[-latex] (LO.north) -- node[midway,right,align=left]{$u_{LO}(t)$} (Mix.south);
\end{circuitikz}
\caption{A mixer with input, output and \acs{LO}}
\end{figure}%
\nomenclature[Bm]{\begin{circuitikz}[baseline={(current bounding box.center)}]\node[mixer](Mix){};\end{circuitikz}}{Mixer}
The block digram of the mixer points out its implementation. The X stands for the multiplication. An ideal mixer is a multiplier:
\begin{equation}
u_o(t) = u_i(t) \cdot u_{LO}(t)
\end{equation}
The input signals are
\begin{enumerate}
\item the input signal which should be shifted in frequency and
\item a sinusoidal \acf{LO} signal.
\end{enumerate}
In fact, the ideal mixer implements a \ac{DSB-SC} \ac{AM}. Its mathematical considerations can be reused. However, the input signal of the \ac{DSB-SC} \ac{AM} was close to zero. The input signal frequency is arbitrary.
The \ac{LO} is another device generating a sinusoidal signal.
\begin{equation}
x_{LO}(t) = \cos\left(\omega_{LO} + \varphi_{LO}\right)
\label{eq:ch05_ideal_mixing_timedomain}
\end{equation}
Its frequency can be fixed or configurable. Configurable frequency \acp{LO} are mainly used to tune the communication system to the transmission or reception frequency.
The Fourier transform of the \ac{LO} signal is:
\begin{equation}
\begin{split}
x_{LO}(t) &= \cos\left(\omega_{LO} + \varphi_{LO}\right) \\
&= \frac{1}{2}\left(e^{j\left(\omega_{LO} + \varphi_{LO}\right)} + e^{-j\left(\omega_{LO} + \varphi_{LO}\right)}\right) \\
&= \frac{1}{2}\left(e^{j \varphi_{LO}} e^{j \omega_{LO}} + e^{-j \varphi_{LO}} e^{-j \omega_{LO}}\right) \\
\underline{X}_{LO}\left(j\omega\right) &= \pi \left( e^{j \varphi_{LO}} \delta\left(\omega - \omega_{LO}\right) + e^{-j \varphi_{LO}} \delta\left(\omega + \omega_{LO}\right) \right)
\end{split}
\end{equation}
%\textit{Remark:} For simplicity, the phase $\varphi_{LO} = 0$ is zero is most considerations.
The multiplication of \eqref{eq:ch05_ideal_mixing_timedomain} becomes a convolution in the frequency-domain:
\begin{equation}
\begin{split}
\underline{X}_{o}\left(j\omega\right) &= \underline{X}_{i}\left(j\omega\right) * \underline{X}_{LO}\left(j\omega\right) \\
&= \pi \left( e^{j \varphi_{LO}} \underbrace{\underline{X}_{i}\left(j\omega - j \omega_{LO}\right)}_{\text{Positive frequency-shift}} + e^{-j \varphi_{LO}} \underbrace{\underline{X}_{i}\left(j\omega + j \omega_{LO}\right)}_{\text{Negative frequency-shift}} \right)
\end{split}
\end{equation}
An import property of the input signal is that it is real-valued in the time-domain. Its spectrum is symmetric:
\begin{equation}
\underline{X}_{i}\left(j\omega\right) = \overline{\underline{X}_{i}\left(-j\omega\right)}
\end{equation}
So, the input signal's spectrum consists of a positive and a negative part:
\begin{equation}
\begin{split}
\underline{X}_{i}^{+}\left(j\omega\right) &= \begin{cases} \underline{X}_{i}\left(j\omega\right) &\quad \text{if } \omega \geq 0,\\ 0 &\quad \text{if } \omega < 0\end{cases} \\
\underline{X}_{i}^{-}\left(j\omega\right) &= \begin{cases} \underline{X}_{i}\left(j\omega\right) &\quad \text{if } \omega \leq 0,\\ 0 &\quad \text{if } \omega > 0\end{cases} \\
\underline{X}_{i}^{+}\left(j\omega\right) &= \overline{\underline{X}_{i}^{-}\left(-j\omega\right)} \\
\underline{X}_{i}\left(j\omega\right) &= \underline{X}_{i}^{+}\left(j\omega\right) + \underline{X}_{i}^{-}\left(j\omega\right)
\end{split}
\end{equation}
\begin{equation}
\begin{split}
\underline{X}_{o}\left(j\omega\right) &= \underline{X}_{i}\left(j\omega\right) * \underline{X}_{LO}\left(j\omega\right) \\
&= \pi \left( \underbrace{e^{j \varphi_{LO}} \underline{X}_{i}^{+}\left(j\omega - j \omega_{LO}\right) + e^{j \varphi_{LO}} \underline{X}_{i}^{-}\left(j\omega - j \omega_{LO}\right) }_{\text{Positive frequency-shift}} \right. \\ & \qquad \left. + \underbrace{e^{-j \varphi_{LO}} \underline{X}_{i}^{+}\left(j\omega + j \omega_{LO}\right) + e^{-j \varphi_{LO}} \underline{X}_{i}^{-}\left(j\omega + j \omega_{LO}\right)}_{\text{Negative frequency-shift}} \right) \\
&\quad \text{Reordering:} \\
&= \pi \left( \underbrace{e^{j \varphi_{LO}} \underline{X}_{i}^{+}\left(j\omega - j \omega_{LO}\right) + e^{-j \varphi_{LO}} \underline{X}_{i}^{-}\left(j\omega + j \omega_{LO}\right) }_{\text{Output signal 1: Sum of \acs{LO} and input frequencies}} \right. \\ & \qquad \left. + \underbrace{e^{-j \varphi_{LO}} \underline{X}_{i}^{+}\left(j\omega + j \omega_{LO}\right) + e^{j \varphi_{LO}} \underline{X}_{i}^{-}\left(j\omega - j \omega_{LO}\right)}_{\text{Output signal 2: Difference of \acs{LO} and input frequencies}} \right) \\
&= \underline{X}_{o,1}\left(j\omega\right) + \underline{X}_{o,2}\left(j\omega\right)
\end{split}
\end{equation}
\begin{itemize}
\item Both the positive $\underline{X}_{i}^{+}$ and negative $\underline{X}_{i}^{-}$ part of the input signals are frequency-shifted in both the positive $+ \omega_{LO}$ and the negative $- \omega_{LO}$ direction. This becomes more evident in Figure \ref{fig:ch05:ideal_mixing_freqdomain}.
\item This resembles the \ac{DSB-SC} \ac{AM} with the difference that the input signal's frequencies are not close to zero.
\item The output signal is the superposition of two output signal:
\begin{itemize}
\item Output signal 1: The \ac{LO} frequency $\omega_{LO}$ is added to all input signals frequencies.
\item Output signal 2: The \ac{LO} frequency $\omega_{LO}$ is subtracted all input signals frequencies.
\end{itemize}
\item Both output signal parts 1 and 2 are real-valued in the time-domain when they are considered isolated. Both signals are Hermitian and therefore fulfil the symmetry rules.
\item Both output signal parts contain the identical information. They are called \index{mirror frequencies} \textbf{mirror frequencies}.
\end{itemize}
\begin{definition}{Mirror frequencies}
Assuming the input signal is represented by the angular frequency $\omega_i$ (although it is usually a frequency band),
\begin{itemize}
\item The angular frequency of output signal 1 is $\omega_{o,1} = \omega_{i} + \omega_{LO}$.
\item The angular frequency of output signal 2 is $\omega_{o,2} = \omega_{i} - \omega_{LO}$.
\end{itemize}
\vspace{0.5em}
The frequencies $\omega_{o,1}$ and $\omega_{o,2}$ are called \index{mirror frequencies} \textbf{mirror frequencies}.
\end{definition}
\begin{attention}
Because of the mirror frequency issue, a filter (\ac{LPF}, \ac{BPF}, etc.) must follow or precede a mixer to eliminate the unwanted mirror frequency.
\end{attention}
\begin{figure}[H]
\subfloat[Input and \acs{LO} signals in the frequency-domain] {
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.15\textheight},
width=0.9\linewidth,
scale only axis,
xlabel={$\omega$},
ylabel={$|\underline{X}|$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=-3.7,
xmax=3.7,
ymin=0,
ymax=1.2,
xtick={-2, -0.8, 0, 0.8, 2},
xticklabels={$- \omega_i$, $- \omega_{LO}$, $0$, $\omega_{LO}$, $\omega_i$},
ytick={0},
]
\draw[red, thick] (axis cs:-1.8,0) -- (axis cs:-2,0.7) node[above,align=center]{$\underline{X}_{i}^{-}$} -- (axis cs:-2.5,0);
\draw[red, thick] (axis cs:1.8,0) -- (axis cs:2,0.7) node[above,align=center]{$\underline{X}_{i}^{+}$} -- (axis cs:2.5,0);
\draw[-latex, blue, very thick] (axis cs:-0.8,0) -- (axis cs:-0.8,1) node[above,align=center]{\acs{LO}};
\draw[-latex, blue, very thick] (axis cs:0.8,0) -- (axis cs:0.8,1) node[above,align=center]{\acs{LO}};
\end{axis}
\end{tikzpicture}
}
\subfloat[Output signals in the frequency-domain] {
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.15\textheight},
width=0.9\linewidth,
scale only axis,
xlabel={$\omega$},
ylabel={$|\underline{X}|$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=-3.7,
xmax=3.7,
ymin=0,
ymax=1.2,
xtick={-2.8, -2, -1.3, 0, 1.3, 2, 2.8},
xticklabels={$- \omega_{o,1}$, $- \omega_i$, $- \omega_{o,2}$, $0$, $\omega_{o,2}$, $\omega_i$, $\omega_{o,1}$},
ytick={0},
]
% X-
\draw[red, thick] (axis cs:-2.6,0) -- (axis cs:-2.8,0.7) -- (axis cs:-3.3,0);
\draw[red, thick] (axis cs:-1.0,0) -- (axis cs:-1.3,0.7) -- (axis cs:-1.8,0);
% X+
\draw[red, thick] (axis cs:2.6,0) -- (axis cs:2.8,0.7) -- (axis cs:3.3,0);
\draw[red, thick] (axis cs:1.0,0) -- (axis cs:1.3,0.7) -- (axis cs:1.8,0);
\draw[dashed] (1.3,0) -- (1.3,1);
\draw[dashed] (2,0) -- (2,1);
\draw[dashed] (2.8,0) -- (2.8,1);
\draw[latex-latex] (1.3,0.9) -- node[midway,above,align=center]{$\omega_{i} - \omega_{LO}$} (2,0.9);
\draw[latex-latex] (2,0.9) -- node[midway,below,align=center]{$\omega_{i} + \omega_{LO}$} (2.8,0.9);
\end{axis}
\end{tikzpicture}
}
\caption{Ideal mixing in the frequency-domain}
\label{fig:ch05:ideal_mixing_freqdomain}
\end{figure}
\begin{example}{Mirror frequencies in a transmitter}
A signal of \SI{1500}{MHz} is mixed with an \ac{LO} signal of \SI{900}{MHz}. The resulting output frequencies are \SI{2400}{MHz} and \SI{600}{MHz}. For a \ac{WLAN} transmitter, only the \SI{2400}{MHz} signal is desired. The \SI{600}{MHz} signal is eliminated by a \ac{BPF} with a centre frequency of \SI{2400}{MHz} after the mixer.
\end{example}
\begin{example}{Mirror frequencies in a receiver}
A receiver shall receive at a frequency of \SI{868}{MHz}. It has an \ac{IF} of \SI{1100}{MHz}. The \ac{LO} is configured to \SI{232}{MHz}. Due to the mirror frequency issue, the \ac{IF} mixer converts both \SI{868}{MHz} and the mirror frequency \SI{1332}{MHz} to \SI{1100}{MHz}. The receiver receives therefore on both \SI{868}{MHz} and \SI{1332}{MHz}. A signal on \SI{1332}{MHz} would disturb the reception of the \SI{868}{MHz} signal and must therefore be eliminated by a \ac{BPF} with a centre frequency of \SI{868}{MHz} before the mixer.
\end{example}
\subsection{Technical Realization of Mixers}
\todo{Non-linear component}
\todo{IP3}
\subsection{Zero-Intermediate-Frequency}
\todo{coherency}
\subsection{Mixing Complex-Valued Baseband Signals}
\todo{IQ Modulator}
\section{Digital Modulation Techniques}
\subsection{Amplitude-Shift Keying}
\subsection{Phase-Shift Keying}
\subsection{Constellation Diagrams}
\todo{What is a symbol?}
\todo{Data to symbol mapping}
\todo{QAM}
\todo{signal chain: S/P -> constellation diagram -> iFFT -> IQ}
\subsection{Coherent and Non-Coherent Demodulation}
\subsection{Inter-Symbol Interference}
\subsection{Synchronization 2: Carrier Recovery}
\todo{Frequency and phase offset}
\phantomsection
\addcontentsline{toc}{section}{References}
\printbibliography[heading=subbibliography]
\end{refsection}
|