summaryrefslogtreecommitdiff
path: root/chapter05/content_ch05.tex
blob: 59be259d60d5da5b1a99ad11d8dfd39c966383cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
% SPDX-License-Identifier: CC-BY-SA-4.0
%
% Copyright (c) 2020 Philipp Le
%
% Except where otherwise noted, this work is licensed under a
% Creative Commons Attribution-ShareAlike 4.0 License.
%
% Please find the full copy of the licence at:
% https://creativecommons.org/licenses/by-sa/4.0/legalcode

\chapter{Modulation and Mixing}

\begin{refsection}
	
The task of a communication system is transmitting information.

Example: Voice transmission
\begin{itemize}
	\item Voice has a spectrum from about \SI{20}{Hz} to \SI{20}{kHz}
	\item It is not feasible to transmit the spectrum directly as electromagnetic waves.
	\item The electromagnetic spectrum must be shared with myriads of other users.
	\item So, the voice is shifted to a higher frequency, for example, \SI{144.3}{MHz}.
	\item The voice is \emph{modulated} on this \emph{carrier} of \SI{144.3}{MHz}.
	\item The voice is then located from about \SI{144.28}{MHz} to \SI{144.32}{MHz}.
\end{itemize}

\begin{definition}{Modulation}
	\index{modulation} \textbf{Modulation} is the process of altering a signal -- the \index{carrier} \textbf{carrier} -- so that it contains the information to be transmitted.
\end{definition}

\begin{definition}{Demodulation}
	\index{demodulation} \textbf{Demodulation} is the inverse process of modulation. The information is extracted from the carrier.
\end{definition}

In the previous example, the voice was the information-carrying signal. This can be transferred to any kind of information. In this chapter, we will discuss techniques to modulate data on carriers which can be transmitted over wired and wireless channels.

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\node[block,draw](Mod){Modulator};
		
		\draw[latex-o] (Mod.west) -- +(-2cm,0) node[left,align=right]{Information};
		\draw[latex-o] (Mod.south) -- +(0,-1cm) node[below,align=center]{\acs{RF} carrier};
		\draw[-latex] (Mod.east) -- +(2cm,0) node[right,align=left]{Modulated\\ \acs{RF} signal};
	\end{tikzpicture}
	\caption{The purpose of modulation}
\end{figure}

\section{Modulation in The Time and Frequency Domain}

Generally, the carrier is a \emph{monochromatic} signal, i.e., it is a sinusoidal function. A sinusoidal function has three parameters: (angular) frequency $\omega_C$, phase $\varphi_C$ and amplitude $\hat{X}_C$.
\begin{equation}
	x_C(t) = \hat{X}_C \cos\left(\omega_C t + \varphi_C\right)
	\label{eq:ch05:carrier_timedomain}
\end{equation}
The frequency is fixed to the carrier frequency. The other two parameters can be altered and the information can be modulated into them.

There are two classes of modulation:
\begin{itemize}
	\item The \index{amplitude modulation} \textbf{\acf{AM}} -- The amplitude of the carrier is altered.
	\begin{equation}
		x_{S,AM}(t) = f_{\hat{X}}(t) \cos\left(\omega_C t + \varphi_C\right)
	\end{equation}
	\item The \index{phase modulation} \textbf{\acf{PM}} -- The phase of the carrier is altered.
	\begin{equation}
		x_{S,PM}(t) = \hat{X}_C \cos\left(\omega_C t + \phi_{\Delta} f_{\varphi}(t)\right)
		\label{eq:ch05:pm_general}
	\end{equation}
\end{itemize}

This section covers basic modulation techniques of analogue signals.
\begin{itemize}
	\item The considerations are explanatory and are extended to digital signals in the following section.
	\item This section shall offer an understanding of how modulation works in general (for both analogue and digital signals).
	\item A digital signal must be converted to an analogue signal in order to physically exists. It can then be modulated onto a carrier and transmitted as an electromagnetic wave.
\end{itemize}

\label{sec:ch05:am}

\subsection{Amplitude Modulation}

The \index{amplitude modulation} \textbf{\acf{AM}} is the alteration of the carrier's amplitude.

\begin{attention}
	By now, all signals are real, because the technical realization is considered. Physical signals must always be real.
\end{attention}

The carrier is a mono-chromatic signal:
\begin{equation}
	x_C(t) = \hat{X}_C \cdot \cos\left(2\pi f_C + \varphi_C\right)
\end{equation}
where
\begin{itemize}
	\item $\hat{X}_C$ is the amplitude of the carrier,
	\item $f_C$ is the carrier frequency ($2\pi f_C = \omega_C$ is carrier angular frequency), and
	\item $\varphi_C$ is the phase offset of the carrier.
\end{itemize}

The carrier amplitude can be altered by multiplying it with the instantaneous value of the information-carrying signal $x_B(t)$:
\begin{equation}
	x_{DSB-TC}(t) = x_B(t) \cdot \left(1 + \mu x_C(t)\right)
	\label{eq:ch05:amdsb_timedomain}
\end{equation}
\begin{itemize}
	\item The waveform of the carrier is retained. The carrier is still present in the modulated signal. This is represented by the $+1$ in the sum.
	\item Its amplitude is changed by the instantaneous value of the information-carrying signal. The contribution of the information-carrying signal is defined by the factor $\mu$.
\end{itemize}

\begin{figure}[H]
	\centering
	
	\subfloat[Carrier and information-carrying signals]{
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.15\textheight},
				width=0.6\linewidth,
				scale only axis,
				xlabel={$t$},
				ylabel={$x(t)$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=outer north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-0.5,
				xmax=8.5,
				ymin=-1.2,
				ymax=1.2,
				%xtick={0,0.125,...,1},
				%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
				%ytick={0},
			]
				\addplot[blue, smooth, domain=0:8, samples=200] plot(\x, {cos(deg(2*pi*2*\x))});
				\addlegendentry{Carrier $x_C(t)$};
				\addplot[red, smooth, domain=0:8, samples=50] plot(\x, {cos(deg(2*pi*0.25*\x))});
				\addlegendentry{Information $x_B(t)$};
			\end{axis}
		\end{tikzpicture}
	}

	\subfloat[\acs{DSB-TC} \acs{AM} (with carrier)]{
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.15\textheight},
				width=0.6\linewidth,
				scale only axis,
				xlabel={$t$},
				ylabel={$x_{DSB-TC}(t)$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=outer north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-0.5,
				xmax=8.5,
				ymin=-1.7,
				ymax=1.7,
				%xtick={0,0.125,...,1},
				%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
				%ytick={0},
			]
				\addplot[red, smooth, domain=0:8, samples=150] plot(\x, {cos(deg(2*pi*2*\x)) * (1+0.5*cos(deg(2*pi*0.25*\x)))});
				\addlegendentry{\acs{DSB} Signal $x_{DSB-TC}(t)$};
				\addplot[olive, dashed, smooth, domain=0:8, samples=150] plot(\x, {(1+0.5*cos(deg(2*pi*0.25*\x)))});
				\addlegendentry{Envelope of $x_B(t)$};
			\end{axis}
		\end{tikzpicture}
	}

	\caption{\acs{DSB} \acs{AM} of analogue signals}
	\label{fig:ch05:dsbtc}
\end{figure}

\subsubsection{Frequency Domain}

Assumptions for the information-carrying signal:
\begin{itemize}
	\item The information-carrying signal is band-limited to $-f_B \geq f \geq f_B$ ($\underline{X}_B\left(j\omega\right) = 0 \quad \forall \; |f| > f_B$).
	\item The information-carrying signal is real-valued. Its spectrum is therefore symmetric ($\underline{X}_B\left(j\omega\right) = \overline{\underline{X}_B\left(-j\omega\right)}$).
\end{itemize}

The carrier is monochromatic \eqref{eq:ch05:carrier_timedomain}. Its \ac{CTFT} is:
\begin{equation}
	\underline{X}_C\left(j\omega\right) = \hat{X}_C \pi \left( \delta\left(\omega + 2 \pi f_C \right) + \delta\left(\omega - 2 \pi f_C \right) \right)
\end{equation}

The time-domain expression \eqref{eq:ch05:amdsb_timedomain} of the \ac{AM} is in the frequency domain:
\begin{equation}
	\underline{X}_{DSB-TC}\left(j\omega\right) = \underline{X}_C\left(j\omega\right) + \mu \underline{X}_C\left(j\omega\right) * \underline{X}_B\left(j\omega\right)
\end{equation}
The multiplication becomes a convolution.
\begin{equation}
	\underline{X}_{DSB-TC}\left(j\omega\right) = \hat{X}_C \pi \left( \underbrace{\delta\left(\omega + 2 \pi f_C \right) + \mu \underline{X}_B\left(j\left(\omega + 2 \pi f_C\right)\right)}_{\text{Carrier plus frequency-shifted information (-)}} + \underbrace{\delta\left(\omega - 2 \pi f_C \right) + \mu \underline{X}_B\left(j\left(\omega - 2 \pi f_C\right)\right)}_{\text{Carrier plus frequency-shifted information (+)}} \right)
\end{equation}

\textbf{The \ac{AM} is a frequency shift of the information-carrying in both the positive and the negative direction.}

Due to the symmetry of the information-carrying signal, there is an \emph{upper sideband} and a \emph{lower sideband}, carrying the identical information, around the carrier.

Because of the presence of the carrier and both sidebands, the modulation is called \index{double-sideband!transmitted carrier} \textbf{\acf{DSB-TC}}.

\begin{definition}{Transmission bandwidth of \acs{DSB} \acs{AM}}
	The modulated signal of the \acs{DSB} \acs{AM} consists of the positive and negative part of the information-carrying signal shifted in frequency to the carrier frequency. The information-carrying signal emerges as sidebands.
	
	Therefore, the bandwidth of the modulated signal is $[\omega_C - \omega_B, \omega_C + \omega_B]$. The difference $2 \omega_B$ is called \index{transmission bandwidth!amplitude modulation} \textbf{transmission bandwidth}.
\end{definition}

\begin{fact}
	The transmission bandwidth of \acs{DSB} \acs{AM} is the double of the maximum frequency in the information-carrying signal $2 \omega_B$.
\end{fact}

\begin{figure}[H]
	\subfloat[Information-carrying signal $\underline{X}_B\left(j\omega\right)$ (real-valued in time-domain)] {
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.15\textheight},
				width=0.9\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$|\underline{X}_B\left(j\omega\right)|$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-3.5,
				xmax=3.5,
				ymin=0,
				ymax=1.2,
				xtick={-0.5, 0, 0.5},
				xticklabels={$- \omega_B$, $0$, $\omega_B$},
				ytick={0},
			]
				\draw[red, thick] (axis cs:-0.5,0) -- (axis cs:0,0.7);
				\draw[red, thick] (axis cs:0,0.7) -- (axis cs:0.5,0);
			\end{axis}
		\end{tikzpicture}
	}
	
	\subfloat[Carrier signal $\underline{X}_C\left(j\omega\right)$ (real-valued in time-domain)] {
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.15\textheight},
				width=0.9\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$|\underline{X}_C\left(j\omega\right)|$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-3.5,
				xmax=3.5,
				ymin=0,
				ymax=1.2,
				xtick={-2, 0, 2},
				xticklabels={$- \omega_C$, $0$, $\omega_C$},
				ytick={0},
			]
				\pgfplotsinvokeforeach{-2, 2}{
					\draw[-latex, blue, very thick] (axis cs:#1,0) -- (axis cs:#1,1);
				}
			\end{axis}
		\end{tikzpicture}
	}
	
	\subfloat[\acs{AM} \acs{DSB-TC} modulated signal $\underline{X}_{DSB-TC}\left(j\omega\right)$ with frequency-shifted information and carrier (real-valued in time-domain)] {
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.15\textheight},
				width=0.9\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$|\underline{X}_{DSB-TC}\left(j\omega\right)|$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-3.5,
				xmax=3.5,
				ymin=0,
				ymax=1.2,
				xtick={-2, 0, 2},
				xticklabels={$- \omega_C$, $0$, $\omega_C$},
				ytick={0},
			]
				\pgfplotsinvokeforeach{-2, 2}{
					\draw[-latex, red, very thick] (axis cs:#1,0) -- (axis cs:#1,1);
					\draw[red, thick] (axis cs:{#1-0.5},0) -- (axis cs:#1,0.7);
					\draw[red, thick] (axis cs:#1,0.7) -- (axis cs:{#1+0.5},0);
				}
			\end{axis}
		\end{tikzpicture}
	}
	
	\caption{Spectrum of the \acs{DSB-TC} \acs{AM} signal}
\end{figure}

\subsection{Carrier Suppression}

The carrier does not contain any information. It can therefore be removed from the modulated signal. The $+1$ of \eqref{eq:ch05:amdsb_timedomain} is dropped. The \ac{AM} becomes a simple multiplication.
\begin{equation}
	x_{DSB-SC}(t) = x_B(t) \cdot x_C(t)
	\label{eq:ch05:amdsbsc_timedomain}
\end{equation}

\begin{figure}[H]
	\centering
	
	\subfloat[Carrier and information-carrying signals]{
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.15\textheight},
				width=0.6\linewidth,
				scale only axis,
				xlabel={$t$},
				ylabel={$x(t)$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=outer north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-0.5,
				xmax=8.5,
				ymin=-1.2,
				ymax=1.2,
				%xtick={0,0.125,...,1},
				%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
				%ytick={0},
			]
				\addplot[blue, smooth, domain=0:8, samples=200] plot(\x, {cos(deg(2*pi*2*\x))});
				\addlegendentry{Carrier $x_C(t)$};
				\addplot[red, smooth, domain=0:8, samples=50] plot(\x, {cos(deg(2*pi*0.25*\x))});
				\addlegendentry{Information $x_B(t)$};
			\end{axis}
		\end{tikzpicture}
	}
	
	\subfloat[\acs{DSB-SC} \acs{AM} (carrier suppressed)]{
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.15\textheight},
				width=0.6\linewidth,
				scale only axis,
				xlabel={$t$},
				ylabel={$x_{DSB-SC}(t)$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=outer north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-0.5,
				xmax=8.5,
				ymin=-1.2,
				ymax=1.2,
				%xtick={0,0.125,...,1},
				%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
				%ytick={0},
			]
				\addplot[red, smooth, domain=0:8, samples=150] plot(\x, {cos(deg(2*pi*2*\x)) * (cos(deg(2*pi*0.25*\x)))});
				\addlegendentry{\acs{DSB-SC} Signal $x_{DSB-SC}(t)$};
				\addplot[olive, dashed, smooth, domain=0:8, samples=150] plot(\x, {(cos(deg(2*pi*0.25*\x)))});
				\addlegendentry{Envelope of $x_B(t)$};
			\end{axis}
		\end{tikzpicture}
	}
	
	\caption{\acs{DSB-SC} \acs{AM} of analogue signals}
\end{figure}

The multiplication in the time-domain becomes a convolution in the frequency domain:
\begin{equation}
	\begin{split}
		\underline{X}_{DSB-SC}\left(j\omega\right) &= \underline{X}_C\left(j\omega\right) * \underline{X}_B\left(j\omega\right) \\
		 &= \hat{X}_C \pi \left( \underbrace{\underline{X}_B\left(j\left(\omega + 2 \pi f_C\right)\right)}_{\text{Frequency-shifted information (-)}} + \underbrace{\underline{X}_B\left(j\left(\omega - 2 \pi f_C\right)\right)}_{\text{Frequency-shifted information (+)}} \right)
	\end{split}
\end{equation}

The information-carrying signal is frequency-shifted in both positive and negative directions. It emerges as two sidebands at carrier frequency. However, the carrier is not present in the output signal. Therefore, the modulation is called \index{double-sideband!suppressed carrier} \textbf{\acf{DSB-SC}}.

Like the \ac{DSB-TC}, the transmission bandwidth of the \ac{DSB-SC} is $2 \omega_B$.

\begin{figure}[H]
	\subfloat[Information-carrying signal $\underline{X}_B\left(j\omega\right)$ (real-valued in time-domain)] {
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.15\textheight},
				width=0.9\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$|\underline{X}_B\left(j\omega\right)|$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-3.5,
				xmax=3.5,
				ymin=0,
				ymax=1.2,
				xtick={-0.5, 0, 0.5},
				xticklabels={$- \omega_B$, $0$, $\omega_B$},
				ytick={0},
			]
				\draw[red, thick] (axis cs:-0.5,0) -- (axis cs:0,0.7);
				\draw[red, thick] (axis cs:0,0.7) -- (axis cs:0.5,0);
			\end{axis}
		\end{tikzpicture}
	}
	
	\subfloat[Carrier signal $\underline{X}_C\left(j\omega\right)$ (real-valued in time-domain)] {
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.15\textheight},
				width=0.9\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$|\underline{X}_C\left(j\omega\right)|$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-3.5,
				xmax=3.5,
				ymin=0,
				ymax=1.2,
				xtick={-2, 0, 2},
				xticklabels={$- \omega_C$, $0$, $\omega_C$},
				ytick={0},
			]
				\pgfplotsinvokeforeach{-2, 2}{
					\draw[-latex, blue, very thick] (axis cs:#1,0) -- (axis cs:#1,1);
				}
			\end{axis}
		\end{tikzpicture}
	}
	
	\subfloat[\acs{AM} \acs{DSB} modulated signal $\underline{X}_{DSB}\left(j\omega\right)$ with frequency-shifted information (real-valued in time-domain). The carrier is suppressed.] {
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.15\textheight},
				width=0.9\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$|\underline{X}_{DSB}\left(j\omega\right)|$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-3.5,
				xmax=3.5,
				ymin=0,
				ymax=1.2,
				xtick={-2, 0, 2},
				xticklabels={$- \omega_C$, $0$, $\omega_C$},
				ytick={0},
			]
				\pgfplotsinvokeforeach{-2, 2}{
					\draw[red, thick] (axis cs:{#1-0.5},0) -- (axis cs:#1,0.7);
					\draw[red, thick] (axis cs:#1,0.7) -- (axis cs:{#1+0.5},0);
				}
			\end{axis}
		\end{tikzpicture}
	}
	
	\caption{Spectrum of the \acs{DSB-SC} \acs{AM} signal}
\end{figure}

\subsubsection{Sideband suppression}

\begin{itemize}
	\item The two sidebands contain identical information.
	\item Therefore, one sideband can be removed without losing information.
	\item High-quality filters with steep slopes in the amplitude response may be used to suppress one the side bands.
	\item The resulting \index{single-sideband} \textbf{\ac{SSB} \ac{AM}} is mainly used for analogue signals, which is out of the scope of this lecture.
\end{itemize}

\label{sec:ch05:pm}

\subsection{Phase Modulation}

\eqref{eq:ch05:pm_general} gave a general expression for the \index{phase modulation} \textbf{\acf{PM}}.
\begin{equation*}
	x_{S,PM}(t) = \hat{X}_C \cos\left(\omega_C t + \phi_{\Delta} f_{\varphi}(t)\right)
\end{equation*}
where $f_{\varphi}(t)$ is the signal carrying the information and $\phi_{\Delta}$ is a scaling factor.


\begin{figure}[H]
	\centering
	
	\subfloat[Carrier and information-carrying signals]{
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.15\textheight},
				width=0.6\linewidth,
				scale only axis,
				xlabel={$t$},
				ylabel={$x(t)$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=outer north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-0.5,
				xmax=8.5,
				ymin=-1.2,
				ymax=1.2,
				%xtick={0,0.125,...,1},
				%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
				%ytick={0},
			]
				\addplot[blue, smooth, domain=0:8, samples=200] plot(\x, {cos(deg(2*pi*2*\x))});
				\addlegendentry{Carrier $x_C(t)$};
				\addplot[red, smooth, domain=0:8, samples=50] plot(\x, {cos(deg(2*pi*0.25*\x))});
				\addlegendentry{Information $x_B(t)$};
			\end{axis}
		\end{tikzpicture}
	}
	
	\subfloat[\acs{PM}]{
		\centering
		\begin{tikzpicture}
			\begin{axis}[
			height={0.15\textheight},
			width=0.6\linewidth,
			scale only axis,
			xlabel={$t$},
			ylabel={$x_{PM}(t)$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=outer north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-0.5,
			xmax=8.5,
			ymin=-1.2,
			ymax=1.2,
			%xtick={0,0.125,...,1},
			%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
			%ytick={0},
		]
			\addplot[red, smooth, domain=0:8, samples=150] plot(\x, {cos( deg(2*pi*2*\x + (3*(cos(deg(2*pi*0.25*\x)))) ))});
			\addlegendentry{\acs{PM} signal};
		\end{axis}
		\end{tikzpicture}
	}
\end{figure}

$x_{S,PM}(t)$ can be decomposed by a Fourier analysis:
\begin{equation}
	x_{S,PM}(t) = \sum_{n=-\infty}^{\infty} \underline{c}_n \cdot e^{j n \omega_C t}
\end{equation}
The coefficients are:
\begin{equation}
	\underline{c}_n = \begin{cases}
		\frac{\hat{X}_C}{2} e^{j \phi_{\Delta} f_{\varphi}(t)} &\quad \text{if } n = 1, \\
		\frac{\hat{X}_C}{2} e^{-j \phi_{\Delta} f_{\varphi}(t)} &\quad \text{if } n = -1, \\
		0 &\quad \text{if } n \neq 1 \text{ and } n \neq -1. \\
	\end{cases}
\end{equation}

Let's consider the positive and negative frequencies separately.
\begin{equation}
	\begin{split}
		\underline{x}_{S,PM}^{+}(t) &= \frac{\hat{X}_C}{2} e^{j \phi_{\Delta} f_{\varphi}(t)} \cdot e^{j \omega_C t} \\
		 &= \frac{\hat{X}_C}{2} \left(\cos\left(\phi_{\Delta} f_{\varphi}(t)\right) + j \sin\left(\phi_{\Delta} f_{\varphi}(t)\right)\right) \left(\cos\left(\omega_C t\right) + j \sin\left(\omega_C t\right)\right)
	\end{split}
	\label{eq:ch05:pm_fourier_pos}
\end{equation}
The negative frequencies are symmetric.
\begin{equation}
	\begin{split}
		\underline{x}_{S,PM}^{-}(t) &= \frac{\hat{X}_C}{2} e^{-j \phi_{\Delta} f_{\varphi}(t)} \cdot e^{-j \omega_C t} \\
		&= \frac{\hat{X}_C}{2} \left(\cos\left(\phi_{\Delta} f_{\varphi}(t)\right) - j \sin\left(\phi_{\Delta} f_{\varphi}(t)\right)\right) \left(\cos\left(\omega_C t\right) - j \sin\left(\omega_C t\right)\right)
	\end{split}
	\label{eq:ch05:pm_fourier_neg}
\end{equation}

A simplification is made: The \emph{narrowband \ac{PM}} is considered.
\begin{itemize}
	\item $\phi_{\Delta} f_{\varphi}(t)$ is much smaller than $1$, i.e., $f_{\varphi}(t) \ll 1$.
	\item Therefore, $\phi_{\Delta} \cos\left(f_{\varphi}(t)\right) \approx 1$ and
	\item $\phi_{\Delta} \sin\left(f_{\varphi}(t)\right) \approx \phi_{\Delta} f_{\varphi}(t)$.
\end{itemize}

\eqref{eq:ch05:pm_fourier_pos} simplifies to
\begin{equation}
	\begin{split}
		\underline{x}_{S,PM}^{+}(t) &\approx \frac{\hat{X}_C}{2} \left(1 + j \phi_{\Delta} f_{\varphi}(t)\right) \left(\cos\left(\omega_C t\right) + j \sin\left(\omega_C t\right)\right) \\
		 &\approx \frac{\hat{X}_C}{2} \left(\cos\left(\omega_C t\right) + j \sin\left(\omega_C t\right) + j \phi_{\Delta} f_{\varphi}(t) \cos\left(\omega_C t\right) - \phi_{\Delta} f_{\varphi}(t) \sin\left(\omega_C t\right)\right)
	\end{split}
\end{equation}
\eqref{eq:ch05:pm_fourier_neg} simplifies to
\begin{equation}
	\begin{split}
		\underline{x}_{S,PM}^{-}(t) &\approx \frac{\hat{X}_C}{2} \left(1 - j \phi_{\Delta} f_{\varphi}(t)\right) \left(\cos\left(\omega_C t\right) - j \sin\left(\omega_C t\right)\right) \\
		&\approx \frac{\hat{X}_C}{2} \left(\cos\left(\omega_C t\right) - j \phi_{\Delta} \sin\left(\omega_C t\right) - j \phi_{\Delta} f_{\varphi}(t) \cos\left(\omega_C t\right) - f_{\varphi}(t) \sin\left(\omega_C t\right)\right)
	\end{split}
\end{equation}

Consequently,
\begin{equation}
	\begin{split}
		\underline{x}_{S,PM}(t) &= \underline{x}_{S,PM}^{+}(t) + \underline{x}_{S,PM}^{-}(t) \\
		 &\approx \hat{X}_C \left(\cos\left(\omega_C t\right) - \phi_{\Delta} f_{\varphi}(t) \sin\left(\omega_C t\right)\right)
	\end{split}
\end{equation}

The Fourier transform of $\underline{x}_{S,PM}(t)$ is approximately:
\begin{equation}
	\underline{X}_{S,PM}\left(j\omega\right) \approx \frac{\hat{X}_C}{2} \left( \delta\left(\omega-\omega_C\right) + \delta\left(\omega+\omega_C\right) - j \phi_{\Delta} \underline{F}_{\varphi}\left(j\omega-j\omega_C\right) + j \phi_{\Delta} \underline{F}_{\varphi}\left(j\omega+j\omega_C\right)\right)
\end{equation}
where $\underline{F}_{\varphi}\left(j\omega\right)$ is the Fourier transform of the information signal $f_{\varphi}(t)$.

For simplicity, let's consider the positive part of the spectrum only.
\begin{equation}
	\underline{X}_{S,PM}^{+}\left(j\omega\right) \approx \frac{\hat{X}_C}{2} \left( \delta\left(\omega-\omega_C\right) - j \phi_{\Delta} \underline{F}_{\varphi}\left(j\omega-j\omega_C\right) \right) \quad \forall \; \omega_C > 0
\end{equation}

\begin{definition}{Transmission bandwidth}
	The \index{transmission bandwidth!narrowband phase modulation} \emph{transmission bandwidth of a narrowband \ac{PM}} is approximately the bandwidth of the information signal.
\end{definition}

%\subsubsection{Narrowband Tone Modulation}
%
%To obtain an estimate for the \index{transmission bandwidth!phase modulation} \emph{transmission bandwidth}, a sinusoidal input is applied to the \ac{PM}.
%\begin{equation}
%	f_{\varphi}(t) = \hat{A_b} \cos\left(\omega_b t\right)
%\end{equation}
%where $\hat{A_b}$ is the signal amplitude and $\omega_b$ is its angular frequency.
%
%The \emph{narrowband \ac{PM}} requires that $\phi_{\Delta} \hat{A_b} \ll 1$.

The transmission bandwidth is controlled by the scaling factor $\phi_{\Delta}$. For high values of $\phi_{\Delta}$, the narrowband approximation is not valid. The transmission bandwidth increases.

\begin{excursus}{Wideband \ac{PM}}
	When the narrowband condition is not fulfilled, the approximations are not valid. The spectrum of the \ac{PM} signal is a series of superimposed Bessel functions. Let's assume that a sinusoidal input is applied to the \ac{PM}.
	\begin{equation}
		f_{\varphi}(t) = \hat{A_b} \cos\left(\omega_b t\right)
	\end{equation}
	where $\hat{A_b}$ is the signal amplitude and $\omega_b$ is its angular frequency. The \ac{PM} is:
	\begin{equation}
		x_{S,PM}(t) = \hat{X}_C \cos\left(\omega_C t + \phi_{\Delta} \hat{A_b} \cos\left(\omega_b t\right)\right)
	\end{equation}
	The product $\beta = \phi_{\Delta} \hat{A_b}$ is the \index{modulation index} \textbf{modulation index}.
	
	The solution for the \ac{PM} signal in the time-domain using applied mathematics is:
	\begin{equation}
		\underline{x}_{S,PM,WB}(t) = \hat{X}_C \sum_{n=-\infty}^{\infty} J_n(\beta) \cos\left(\left(\omega_C + n \omega_{b}\right)t\right)
	\end{equation}
	where $J_n(\beta)$ is the Bessel function of the $n$-th order.
	
	\begin{figure}[H]
		\centering
		
		\subfloat[Small modulation index $\beta$ (narrowband)]{
			\centering
			\begin{tikzpicture}
				\begin{axis}[
					height={0.1\textheight},
					width=0.35\linewidth,
					scale only axis,
					xlabel={$\omega$},
					ylabel={$|\underline{X}_{PM}|$},
					%grid style={line width=.6pt, color=lightgray},
					%grid=both,
					grid=none,
					legend pos=outer north east,
					axis y line=middle,
					axis x line=middle,
					every axis x label/.style={
						at={(ticklabel* cs:1.05)},
						anchor=north,
					},
					every axis y label/.style={
						at={(ticklabel* cs:1.05)},
						anchor=east,
					},
					xmin=0,
					xmax=8.5,
					ymin=0,
					ymax=1.2,
					%xtick={0,0.125,...,1},
					%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
					%ytick={0},
				]
					\addplot[red,very thick] coordinates{(4,0) (4,1)};
					\addplot[red,very thick] coordinates{(3,0) (3,0.7)};
					\addplot[red,very thick] coordinates{(5,0) (5,0.7)};
				\end{axis}
			\end{tikzpicture}
		}

		\subfloat[Large modulation index $\beta$]{
			\centering
			\begin{tikzpicture}
				\begin{axis}[
					height={0.1\textheight},
					width=0.35\linewidth,
					scale only axis,
					xlabel={$\omega$},
					ylabel={$|\underline{X}_{PM}|$},
					%grid style={line width=.6pt, color=lightgray},
					%grid=both,
					grid=none,
					legend pos=outer north east,
					axis y line=middle,
					axis x line=middle,
					every axis x label/.style={
						at={(ticklabel* cs:1.05)},
						anchor=north,
					},
					every axis y label/.style={
						at={(ticklabel* cs:1.05)},
						anchor=east,
					},
					xmin=0,
					xmax=8.5,
					ymin=0,
					ymax=1.2,
					%xtick={0,0.125,...,1},
					%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
					%ytick={0},
				]
					\addplot[red,very thick] coordinates{(4,0) (4,0.3)};
					
					\pgfplotsinvokeforeach{-1,1}{
						\addplot[red,very thick] coordinates{({4+(#1*1.5)-(#1*1.125)},0) ({4+(#1*1.5)-(#1*1.125)},0.1)};
						\addplot[red,very thick] coordinates{({4+(#1*1.5)-(#1*0.75)},0) ({4+(#1*1.5)-(#1*0.75)},0.3)};
						\addplot[red,very thick] coordinates{({4+(#1*1.5)-(#1*0.375)},0) ({4+(#1*1.5)-(#1*0.375)},0.6)};
						\addplot[red,very thick] coordinates{({4+(#1*1.5)},0) ({4+(#1*1.5)},1)};
						\addplot[red,very thick] coordinates{({4+(#1*1.5)+(#1*0.375)},0) ({4+(#1*1.5)+(#1*0.375)},0.9)};
						\addplot[red,very thick] coordinates{({4+(#1*1.5)+(#1*0.75)},0) ({4+(#1*1.5)+(#1*0.75)},0.2)};
						\addplot[red,very thick] coordinates{({4+(#1*1.5)+(#1*1.125)},0) ({4+(#1*1.5)+(#1*1.125)},0.5)};
					}
				\end{axis}
			\end{tikzpicture}
		}
	
		\caption{Example spectra at different modulation indices}
	\end{figure}
\end{excursus}

\section{Frequency mixer}

The information-carrying signal and the carrier are usually at different frequencies. A communication system must therefore be able to shift between multiple frequencies. Such communication systems are called \index{heterodyne} \textbf{heterodyne}.

\begin{itemize}
	\item The modulation and demodulation happen at a low, near-zero frequency. The modulated signal is the \index{baseband signal} \textbf{baseband signal}.
	\item A device called \index{mixer} \textbf{mixer} converts one frequency to another. The modulated information is kept intact.
\end{itemize}

\begin{figure}[H]
	\centering
	
	\subfloat[Heterodyne transmitter without \acs{IF} stage]{
		\centering
		\begin{adjustbox}{scale=0.8}
			\begin{circuitikz}
				\node[block, draw](Baseband){Baseband\\ modulation};
				\node[mixer, right=2.5cm of Baseband](Mixer){};
				\node[ampshape, right=4cm of Mixer](Amplifier){};
				
				\draw (Mixer.south) node[below,align=center,yshift=-5mm]{Mixer};
				\draw (Amplifier.south) node[below,align=center,yshift=-5mm]{\acs{RF}\\ amplifier};
				
				\draw[-latex] (Baseband.east) -- node[midway,above,align=center]{Baseband\\ signal} (Mixer.west);
				\draw[-latex] (Mixer.east) to[bandpass] ++(2cm,0) -- node[midway,above,align=center]{\acs{RF}\\ signal} (Amplifier.west);
				\draw (Amplifier.east) to[bandpass] ++(2cm,0) -- ++(0,0) node[txantenna]{};
			\end{circuitikz}
		\end{adjustbox}
	}

	\subfloat[Heterodyne receiver without \acs{IF} stage]{
		\centering
		\begin{adjustbox}{scale=0.8}
			\begin{circuitikz}
				\node[ampshape](RFAmplifier){};
				\node[mixer, right=2cm of RFAmplifier](Mixer){};
				\node[ampshape, right=2.5cm of Mixer](BBAmplifier){};
				\node[block, draw, right=2.5cm of BBAmplifier](Baseband){Baseband\\ demodulation};
				
				\draw (RFAmplifier.south) node[below,align=center,yshift=-5mm]{\acs{RF}\\ amplifier};
				\draw (Mixer.south) node[below,align=center,yshift=-5mm]{Mixer};
				\draw (BBAmplifier.south) node[below,align=center,yshift=-5mm]{Baseband\\ amplifier};
				
				\draw (RFAmplifier.west) to[bandpass] ++(-2cm,0) node[rxantenna,xscale=-1]{};
				
				\draw[-latex] (RFAmplifier.east) -- node[midway,above,align=center]{\acs{RF}\\ signal} (Mixer.west);
				\draw[-latex] (Mixer.east) to[bandpass] ++(2cm,0) -- (BBAmplifier.west);
				\draw[-latex] (BBAmplifier.east) -- node[midway,above,align=center]{Baseband\\ signal} (Baseband.west);
			\end{circuitikz}
		\end{adjustbox}
	}

	\subfloat[Superheterodyne receiver]{
		\centering
		\begin{adjustbox}{scale=0.6}
			\begin{circuitikz}
				\node[ampshape](RFAmplifier){};
				\node[mixer, right=2cm of RFAmplifier](RFMixer){};
				\node[ampshape, right=2.5cm of RFMixer](IFAmplifier){};
				\node[mixer, right=2cm of IFAmplifier](IFMixer){};
				\node[ampshape, right=2.5cm of IFMixer](BBAmplifier){};
				\node[block, draw, right=2.5cm of BBAmplifier](Baseband){Baseband\\ demodulation};
				
				\draw (RFAmplifier.south) node[below,align=center,yshift=-5mm]{\acs{RF}\\ amplifier};
				\draw (RFMixer.south) node[below,align=center,yshift=-5mm]{\acs{RF}\\ Mixer};
				\draw (IFAmplifier.south) node[below,align=center,yshift=-5mm]{\acs{IF}\\ amplifier};
				\draw (IFMixer.south) node[below,align=center,yshift=-5mm]{\acs{IF}\\ Mixer};
				\draw (BBAmplifier.south) node[below,align=center,yshift=-5mm]{Baseband\\ amplifier};
				
				\draw (RFAmplifier.west) to[bandpass] ++(-2cm,0) ++(0,0) node[rxantenna,xscale=-1]{};
				
				\draw[-latex] (RFAmplifier.east) -- node[midway,above,align=center]{\acs{RF}\\ signal} (RFMixer.west);
				\draw[-latex] (RFMixer.east) to[bandpass] ++(2cm,0) -- (IFAmplifier.west);
				\draw[-latex] (IFAmplifier.east) -- node[midway,above,align=center]{\acs{IF}\\ signal} (IFMixer.west);
				\draw[-latex] (IFMixer.east) to[bandpass] ++(2cm,0) -- (BBAmplifier.west);
				\draw[-latex] (BBAmplifier.east) -- node[midway,above,align=center]{Baseband\\ signal} (Baseband.west);
			\end{circuitikz}
		\end{adjustbox}
	}

	\caption{A selection of heterodyne architectures}
	\label{fig:ch05:trx_if_arch}
\end{figure}

Definitions:
\begin{itemize}
	\item The \index{radio-frequency signal} \textbf{\ac{RF} signal}: The \ac{RF} signal is the high-frequency signal transmitted as an electromagnetic wave. This is the frequency used for the communication over the wired or wireless channel.
	\item The \index{baseband signal} \textbf{baseband signal}: The near-zero signal is processed by the modulator or demodulator. In digital communication system, this is the signal used by the digital signal processing. It is generated by a \ac{DAC} in a transmitter and digitized by an \ac{ADC} in a receiver.
	\item The \index{intermediate-frequency signal} \textbf{\ac{IF} signal}: Both transmitter and receiver may optionally have an \ac{IF} stage. The \ac{IF} is usually fixed, so that high quality filters can be implemented to achieve good selectivity and high \ac{SNR}. The baseband is a special kind of \ac{IF} signal with an \ac{IF} of zero or close to zero.
\end{itemize}

\subsection{Mixing Principle}

A \emph{frequency mixer}, or in short \index{mixer} \textbf{mixer}, is a device which produces a new frequency from two input frequencies. The goal is a frequency shift of the input signal frequency to the desired output signal frequency.

\begin{figure}[H]
	\centering
	\begin{circuitikz}
		\node[mixer](Mix){};
		\node[oscillator,below=of Mix](LO){};
		
		\draw (LO.south) node[below,align=center,yshift=-5mm]{\acs{LO}};
		
		\draw[latex-o] (Mix.west) -- (-2cm,0) node[left,align=right]{Input\\ signal $x_i(t)$};
		\draw[-latex] (Mix.east) -- (2cm,0) node[right,align=left]{Output\\ signal $x_o(t)$};
		\draw[-latex] (LO.north) -- node[midway,right,align=left]{$u_{LO}(t)$} (Mix.south);
	\end{circuitikz}
	\caption{A mixer with input, output and \acs{LO}}
\end{figure}%
\nomenclature[Bm]{\begin{circuitikz}[baseline={(current bounding box.center)}]\node[mixer](Mix){};\end{circuitikz}}{Mixer}

The block digram of the mixer points out its implementation. The X stands for the multiplication. An ideal mixer is a multiplier:
\begin{equation}
	u_o(t) = u_i(t) \cdot u_{LO}(t)
\end{equation}

The input signals are
\begin{enumerate}
	\item the input signal which should be shifted in frequency and
	\item a sinusoidal \acf{LO} signal.
\end{enumerate}

In fact, the ideal mixer implements a \ac{DSB-SC} \ac{AM}. Its mathematical considerations can be reused. However, the input signal of the \ac{DSB-SC} \ac{AM} was close to zero. The input signal frequency is arbitrary.

The \ac{LO} is another device generating a sinusoidal signal.
\begin{equation}
	x_{LO}(t) = \cos\left(\omega_{LO} + \varphi_{LO}\right)
	\label{eq:ch05_ideal_mixing_timedomain}
\end{equation}
Its frequency can be fixed or configurable. Configurable frequency \acp{LO} are mainly used to tune the communication system to the transmission or reception frequency.

The Fourier transform of the \ac{LO} signal is:
\begin{equation}
	\begin{split}
		x_{LO}(t) &= \cos\left(\omega_{LO} + \varphi_{LO}\right) \\
		 &= \frac{1}{2}\left(e^{j\left(\omega_{LO} + \varphi_{LO}\right)} + e^{-j\left(\omega_{LO} + \varphi_{LO}\right)}\right) \\
		 &= \frac{1}{2}\left(e^{j \varphi_{LO}} e^{j \omega_{LO}} + e^{-j \varphi_{LO}} e^{-j \omega_{LO}}\right) \\
		\underline{X}_{LO}\left(j\omega\right) &= \pi \left( e^{j \varphi_{LO}} \delta\left(\omega - \omega_{LO}\right) + e^{-j \varphi_{LO}} \delta\left(\omega + \omega_{LO}\right) \right)
	\end{split}
\end{equation}
%\textit{Remark:} For simplicity, the phase $\varphi_{LO} = 0$ is zero is most considerations.

The multiplication of \eqref{eq:ch05_ideal_mixing_timedomain} becomes a convolution in the frequency-domain:
\begin{equation}
	\begin{split}
		\underline{X}_{o}\left(j\omega\right) &= \underline{X}_{i}\left(j\omega\right) * \underline{X}_{LO}\left(j\omega\right) \\
		 &= \pi \left( e^{j \varphi_{LO}} \underbrace{\underline{X}_{i}\left(j\omega - j \omega_{LO}\right)}_{\text{Positive frequency-shift}} + e^{-j \varphi_{LO}} \underbrace{\underline{X}_{i}\left(j\omega + j \omega_{LO}\right)}_{\text{Negative frequency-shift}} \right)
	\end{split}
\end{equation}

An import property of the input signal is that it is real-valued in the time-domain. Its spectrum is symmetric:
\begin{equation}
	\underline{X}_{i}\left(j\omega\right) = \overline{\underline{X}_{i}\left(-j\omega\right)}
\end{equation}
So, the input signal's spectrum consists of a positive and a negative part:
\begin{equation}
	\begin{split}
		\underline{X}_{i}^{+}\left(j\omega\right) &= \begin{cases} \underline{X}_{i}\left(j\omega\right) &\quad \text{if } \omega \geq 0,\\ 0  &\quad \text{if } \omega < 0\end{cases} \\
		\underline{X}_{i}^{-}\left(j\omega\right) &= \begin{cases} \underline{X}_{i}\left(j\omega\right) &\quad \text{if } \omega \leq 0,\\ 0  &\quad \text{if } \omega > 0\end{cases} \\
		\underline{X}_{i}^{+}\left(j\omega\right) &= \overline{\underline{X}_{i}^{-}\left(-j\omega\right)} \\
		\underline{X}_{i}\left(j\omega\right) &= \underline{X}_{i}^{+}\left(j\omega\right) + \underline{X}_{i}^{-}\left(j\omega\right)
	\end{split}
\end{equation}

\begin{equation}
	\begin{split}
		\underline{X}_{o}\left(j\omega\right) &= \underline{X}_{i}\left(j\omega\right) * \underline{X}_{LO}\left(j\omega\right) \\
		 &= \pi \left( \underbrace{e^{j \varphi_{LO}} \underline{X}_{i}^{+}\left(j\omega - j \omega_{LO}\right) + e^{j \varphi_{LO}} \underline{X}_{i}^{-}\left(j\omega - j \omega_{LO}\right) }_{\text{Positive frequency-shift}} \right. \\ & \qquad \left. + \underbrace{e^{-j \varphi_{LO}} \underline{X}_{i}^{+}\left(j\omega + j \omega_{LO}\right) + e^{-j \varphi_{LO}} \underline{X}_{i}^{-}\left(j\omega + j \omega_{LO}\right)}_{\text{Negative frequency-shift}} \right) \\
		 &\quad \text{Reordering:} \\
		 &= \pi \left( \underbrace{e^{j \varphi_{LO}} \underline{X}_{i}^{+}\left(j\omega - j \omega_{LO}\right) + e^{-j \varphi_{LO}} \underline{X}_{i}^{-}\left(j\omega + j \omega_{LO}\right) }_{\text{Output signal 1: Sum of \acs{LO} and input frequencies}} \right. \\ & \qquad \left. + \underbrace{e^{-j \varphi_{LO}} \underline{X}_{i}^{+}\left(j\omega + j \omega_{LO}\right) + e^{j \varphi_{LO}} \underline{X}_{i}^{-}\left(j\omega - j \omega_{LO}\right)}_{\text{Output signal 2: Difference of \acs{LO} and input frequencies}} \right) \\
		 &= \underline{X}_{o,1}\left(j\omega\right) + \underline{X}_{o,2}\left(j\omega\right)
	\end{split}
\end{equation}

\begin{itemize}
	\item Both the positive $\underline{X}_{i}^{+}$ and negative $\underline{X}_{i}^{-}$ part of the input signals are frequency-shifted in both the positive $+ \omega_{LO}$ and the negative $- \omega_{LO}$ direction. This becomes more evident in Figure \ref{fig:ch05:ideal_mixing_freqdomain}.
	\item This resembles the \ac{DSB-SC} \ac{AM} with the difference that the input signal's frequencies are not close to zero.
	\item The output signal is the superposition of two output signal:
	\begin{itemize}
		\item Output signal 1: The \ac{LO} frequency $\omega_{LO}$ is added to all input signals frequencies.
		\item Output signal 2: The \ac{LO} frequency $\omega_{LO}$ is subtracted all input signals frequencies.
	\end{itemize}
	\item Both output signal parts 1 and 2 are real-valued in the time-domain when they are considered isolated. Both signals are Hermitian and therefore fulfil the symmetry rules.
	\item Both output signal parts contain the identical information. They are called \index{mirror frequencies} \textbf{mirror frequencies}.
\end{itemize}

\begin{definition}{Mirror frequencies}
	Assuming the input signal is represented by the angular frequency $\omega_i$ (although it is usually a frequency band),
	\begin{itemize}
		\item The angular frequency of output signal 1 is $\omega_{o,1} = \omega_{i} + \omega_{LO}$.
		\item The angular frequency of output signal 2 is $\omega_{o,2} = \omega_{i} - \omega_{LO}$.
	\end{itemize}

	\vspace{0.5em}

	The frequencies $\omega_{o,1}$ and $\omega_{o,2}$ are called \index{mirror frequencies} \textbf{mirror frequencies}.
\end{definition}

\begin{attention}
	Because of the mirror frequency issue, a filter (\ac{LPF}, \ac{BPF}, etc.) must follow or precede a mixer to eliminate the unwanted mirror frequency.
\end{attention}


\begin{figure}[H]
	\subfloat[Input and \acs{LO} signals in the frequency-domain] {
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.15\textheight},
				width=0.9\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$|\underline{X}|$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-3.7,
				xmax=3.7,
				ymin=0,
				ymax=1.2,
				xtick={-2, -0.8, 0, 0.8, 2},
				xticklabels={$- \omega_i$, $- \omega_{LO}$, $0$, $\omega_{LO}$, $\omega_i$},
				ytick={0},
			]
				\draw[red, thick] (axis cs:-1.8,0) -- (axis cs:-2,0.7) node[above,align=center]{$\underline{X}_{i}^{-}$} -- (axis cs:-2.5,0);
				\draw[red, thick] (axis cs:1.8,0) -- (axis cs:2,0.7) node[above,align=center]{$\underline{X}_{i}^{+}$} -- (axis cs:2.5,0);
				
				\draw[-latex, blue, very thick] (axis cs:-0.8,0) -- (axis cs:-0.8,1) node[above,align=center]{\acs{LO}};
				\draw[-latex, blue, very thick] (axis cs:0.8,0) -- (axis cs:0.8,1) node[above,align=center]{\acs{LO}};
			\end{axis}
		\end{tikzpicture}
	}
	
	\subfloat[Output signals in the frequency-domain] {
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.15\textheight},
				width=0.9\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$|\underline{X}|$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-3.7,
				xmax=3.7,
				ymin=0,
				ymax=1.2,
				xtick={-2.8, -2, -1.3, 0, 1.3, 2, 2.8},
				xticklabels={$- \omega_{o,1}$, $- \omega_i$, $- \omega_{o,2}$, $0$, $\omega_{o,2}$, $\omega_i$, $\omega_{o,1}$},
				ytick={0},
			]
				% X-
				\draw[red, thick] (axis cs:-2.6,0) -- (axis cs:-2.8,0.7) -- (axis cs:-3.3,0);
				\draw[red, thick] (axis cs:-1.0,0) -- (axis cs:-1.3,0.7) -- (axis cs:-1.8,0);
				
				% X+
				\draw[red, thick] (axis cs:2.6,0) -- (axis cs:2.8,0.7) -- (axis cs:3.3,0);
				\draw[red, thick] (axis cs:1.0,0) -- (axis cs:1.3,0.7) -- (axis cs:1.8,0);
				
				\draw[dashed] (1.3,0) -- (1.3,1);
				\draw[dashed] (2,0) -- (2,1);
				\draw[dashed] (2.8,0) -- (2.8,1);
				\draw[latex-latex] (1.3,0.9) -- node[midway,above,align=center]{$\omega_{i} - \omega_{LO}$} (2,0.9);
				\draw[latex-latex] (2,0.9) -- node[midway,below,align=center]{$\omega_{i} + \omega_{LO}$} (2.8,0.9);
			\end{axis}
		\end{tikzpicture}
	}
	
	\caption{Ideal mixing in the frequency-domain}
	\label{fig:ch05:ideal_mixing_freqdomain}
\end{figure}

\begin{example}{Mirror frequencies in a transmitter}
	A signal of \SI{1500}{MHz} is mixed with an \ac{LO} signal of \SI{900}{MHz}. The resulting output frequencies are \SI{2400}{MHz} and \SI{600}{MHz}. For a \ac{WLAN} transmitter, only the \SI{2400}{MHz} signal is desired. The \SI{600}{MHz} signal is eliminated by a \ac{BPF} with a centre frequency of \SI{2400}{MHz} after the mixer.
\end{example}

\begin{example}{Mirror frequencies in a receiver}
	A receiver shall receive at a frequency of \SI{868}{MHz}. It has an \ac{IF} of \SI{1100}{MHz}. The \ac{LO} is configured to \SI{232}{MHz}. Due to the mirror frequency issue, the \ac{IF} mixer converts both \SI{868}{MHz} and the mirror frequency \SI{1332}{MHz} to \SI{1100}{MHz}. The receiver receives therefore on both \SI{868}{MHz} and \SI{1332}{MHz}. A signal on \SI{1332}{MHz} would disturb the reception of the \SI{868}{MHz} signal and must therefore be eliminated by a \ac{BPF} with a centre frequency of \SI{868}{MHz} before the mixer.
\end{example}


\subsection{Technical Realization of Mixers}

\begin{figure}[H]
	\centering
	\begin{adjustbox}{scale=1}
		\begin{circuitikz}
			\node[adder](Adder){};
			\node[block,draw,right=of Adder](NonLin){Non-linear\\ component};
			\node[oscillator,below=of Adder](LO){};
			
			\draw (LO.south) node[below,align=center,yshift=-5mm]{\acs{LO}};
			
			\draw[latex-o] (Adder.west) -- ++(-2cm,0) node[left,align=right]{Input\\ signal $x_i(t)$};
			\draw[-latex] (Adder.east) -- (NonLin.west);
			\draw[-latex] (NonLin.east) -- ++(2cm,0) node[right,align=left]{Output\\ signal $x_o(t)$};
			\draw[-latex] (LO.north) -- node[midway,right,align=left]{$u_{LO}(t)$} (Mix.south);
			\draw[latex-o] (Adder.north) -- (0,1.5cm) node[above,align=center]{\acs{DC} bias\\ (optional)};
		\end{circuitikz}
	\end{adjustbox}
	\caption[Basic principle of a mixer]{Basic principle of a mixer. The input signals and optionally a \acs{DC} bias are combined. A non-linearity implements the mixing process.}
\end{figure}

\begin{figure}[H]
	\centering
	\begin{adjustbox}{scale=1}
		\begin{circuitikz}
			\draw (0,2) node[left,align=right]{Input\\ signal} to[short,o-] (1,2) to[R,l=$R$] (3,2);
			\draw (0,0) node[left,align=right]{\acs{LO}\\ signal} to[short,o-] (1,0) to[R,l=$R$] (3,0) to[short,-*] (3,2);
			\draw (3,2) to[R,l=$R$] (5,2) to[C,l=$C$] (7,2) to[empty diode] (9,2) to[short,-o] (10,2) node[right,align=left]{Output\\ signal};
			\draw (7,4) node[above,align=center]{\acs{DC} bias} to[L,l=$L$,o-*] (7,2);
			
			\draw[dashed] (1,3) -- (5,3) -- (5,-1) -- (1,-1) node[below right,align=left]{Power combiner} -- cycle;
		\end{circuitikz}
	\end{adjustbox}
	\caption[Passive unbalanced mixer]{Passive unbalanced mixer. The input signals are added. Then a \acs{DC} bias is injected. The diode is the non-linearity where the mixing happens. The carrier is not suppressed.}
	\label{fig:ch05:pass_unbal_mixer}
\end{figure}

\begin{figure}[H]
	\centering
	\begin{adjustbox}{scale=0.8}
		\begin{circuitikz}
			% current source
			\draw(0,0) to[I=$2 I_T$,*-] ++(0,-2)
			node[rground]{};
			
			% driver stage
			\draw(-3,1) node[npn](Q5){} node[right]{Q5};
			\draw(3,1) node[npn,xscale=-1](Q6){} node[left]{Q6};
			\draw(0,0) to[R,l^=$Z_e$] ++(-3,0)
				|- (Q5.E);
			\draw(0,0) to[R,l_=$Z_e$] ++(3,0)
				|- (Q6.E);
			\draw(Q5.B) to[short,-o] ++(-1,0)
				node[left]{Differential input (+)};
			\draw(Q6.B) to[short,-o] ++(1,0)
				node[right]{Differential input (-)};
			
			% switching quad
			\draw(Q5) ++(-1,1.5) node[npn](Q7){} node[right]{Q7};
			\draw(Q5) ++(1,1.5) node[npn,xscale=-1](Q8){} node[left]{Q8};
			\draw(Q6) ++(-1,1.5) node[npn](Q9){} node[right]{Q9};
			\draw(Q6) ++(1,1.5) node[npn,xscale=-1](Q10){} node[left]{Q10};
			\draw(Q5.C) to[short,*-] ++(-1,0)
				|- (Q7.E);
			\draw(Q5.C) to[short] ++(1,0)
				|- (Q8.E);
			\draw(Q6.C) to[short,*-] ++(-1,0)
				|- (Q9.E);
			\draw(Q6.C) to[short] ++(1,0)
				|- (Q10.E);
			\draw(Q7.B) to[short,-o] ++(-1,0)
				node[left]{Differential \acs{LO} (-)};
			\draw(Q10.B) to[short,-o] ++(1,0)
				node[right]{Differential \acs{LO} (-)};
			\draw(Q8.B) to[short] (Q9.B);
			\draw(0,|-Q8.B) to[short,*-o] ++(0,-0.5)
				node[below]{Differential \acs{LO} (+)};
			\draw(Q7.C) to[short] ++(0,0.5)
				to[R,l_=$R$] ++(0,2)
				node[vcc]{};
			\draw(Q9.C) to[short] (Q7.C)
				to[short,*-o] ++(-2,0)
				node[left]{Differential output (-)};
			\draw(Q10.C) to[short] ++(0,0.5) node(AboveQ10){}
				to[R,l_=$R$] ++(0,2)
				node[vcc]{};
			\draw(Q8.C) to[short] ++(0,0.5)
				to[short] (AboveQ10)
				to[short,*-o] ++(2,0)
				node[right]{Differential output (+)};
		\end{circuitikz}
	\end{adjustbox}
	\caption[Active double-balanced mixer with differential inputs and output]{Active double-balanced mixer with differential inputs and output. The switching stages (balanced transistor pairs) implement the non-linearity. The balanced switching mode suppresses the carrier.}
\end{figure}

The core component of a mixer is a non-linear device.

Figure \ref{fig:ch05:pass_unbal_mixer} depicts a simple mixer with a diode as the non-linear device. The characteristic curve of a diode is an exponential function -- the \emph{Schockley diode equation}.
\begin{equation}
	I = I_S \left(e^{\frac{V_D}{n V_T}} - 1\right)
\end{equation}
The equation describes the relation of the diode current $I$ and its forward voltage $V_D$. The equation is non-linear.

A mathematical model is depicted in Figure \ref{fig:ch05:math_model_mixer}.
\begin{figure}
	\centering
	\begin{circuitikz}
		\draw(0,0) node[mixer](Mix){};
		\draw(-3,|-Mix) node[adder](Add){};
		\draw(Mix.4) node[above]{$M(x)$};
		\draw(Add.3) -- (Mix.1) node[inputarrow]{};
		\draw(Add.1) +(-1,0) node[above]{$x_{i}$} -- (Add.1) node[inputarrow]{};
		\draw(Add.4) +(0,1) node[right]{$a$} -- (Add.4) node[inputarrow,rotate=-90]{};
		\draw(Add.2) +(0,-1) node[right]{$x_{LO}$} -- (Add.2) node[inputarrow,rotate=90]{};
		\draw(Mix.3) -- +(1,0) node[inputarrow]{$x_{o}$};
	\end{circuitikz}
	\caption[Mathematical model of the mixer]{Mathematical model of the mixer with a signal combiner ($x_{i} + x_{LO} + a$) and a non-linear device with the characteristic $M(x)$. $x_{i}$ is the input, $x_{LO}$ is the \acs{LO}, $x_{o}$ is the output and $a$ is the \acs{DC} bias defining the operating point.}
	\label{fig:ch05:math_model_mixer}
\end{figure}

The non-linearity $M(x)$ of the diode or any other non-linear devices can be expressed as a \emph{Taylor series}. The Taylor series is developed around a operating point of non-linear device which is defined by the bias $a$.
\begin{equation}
	\begin{split}
		x_{o} &= M(x_{i} + x_{LO} + a) = \sum\limits_{n=0}^{\infty} \frac{1}{n!} \left.\frac{\mathrm{d}^n M(x)}{\mathrm{d} x^n}\right|_{x=a} \left(x_{i} + x_{LO} + a - a\right)^n \\
		 &= M(a) + \underbrace{M^{(1)}(a) \left(x_{i} + x_{LO}\right)}_{\text{Linear term}} + \underbrace{\frac{M^{(2)}(a)}{2} \left(x_{i} + x_{LO}\right)^2}_{\text{Quadratic term}} + \underbrace{\frac{M^{(3)}(a)}{6} \left(x_{i} + x_{LO}\right)^2}_{\text{Qubic term}} + \dots
	\end{split}
\end{equation}

\begin{itemize}
	\item The \underline{linear term} is used in electronics for the small signal analysis of a circuit.
	\item Mixers are driven with relatively strong signals. Therefore, the \underline{quadratic term} comes into play.
	\item The contribution of high-order polynomials decreases with their order due to the coefficient $\frac{1}{n!}$. Because of that, polynomials of order three or higher are neglected.
\end{itemize}

The quadratic term is the important part in the mixing process.
\begin{equation}
	\left(x_{i} + x_{LO}\right)^2 = x_{i}^2 + 2 \underbrace{x_{i} x_{LO}}_{\text{Mixing}} + x_{LO}^2
\end{equation}

The quadratic term devolves, amongst others, into a multiplication of the input signals. This is where the mixing process happens.

\begin{excursus}{Spurious components in the output signal}
	The equation
	\begin{equation*}
		\left(x_{i} + x_{LO}\right)^2 = x_{i}^2 + 2 x_{i} x_{LO} + x_{LO}^2
	\end{equation*}
	points out that there are more signals than the desired signals.
	\begin{itemize}
		\item The term $x_{i} x_{LO}$ yields the desired components in the output signal.
		\begin{itemize}
			\item A signal at a frequency of $\omega_i - \omega_{LO}$
			\item Another signal at the mirror frequency of $\omega_i + \omega_{LO}$
		\end{itemize}
		\item The two other terms produce spurious signals
		\begin{itemize}
			\item at the double frequency of the \ac{LO} $2 \omega_{LO}$ and
			\item at the double frequency of the input $2 \omega_{i}$.
		\end{itemize}
	\end{itemize}
\end{excursus}

The spurious signals distort the output signal, decrease the \ac{SNR} and are therefore unwanted. \textbf{The output of the mixer must always be filtered, to remove spurious components.}

\begin{excursus}{Intermodulation}
	Other spurious signals are created by higher order polynomials.
	\begin{itemize}
		\item For weak inputs, their contribution is low (due to the coefficient $\frac{1}{n!}$) and can be neglected.
		\item If the input signal is strong enough, polynomials of orders higher than 2 cannot be neglected any longer and must be considered as well.
		\item Especially, the 3rd order polynomial comes into effect firstly. It amongst others contributes the following output frequencies:
		\begin{itemize}
			\item $2 \omega_a - \omega_b$
			\item $2 \omega_b - \omega_a$
		\end{itemize}
		\item Example:
		\begin{itemize}
			\item The \ac{LO} is \SI{100}{MHz}. The \ac{RF} signal at \SI{110}{MHz} shall be mixed down to \SI{10}{MHz}.
			\item There are two more very strong, disturbing signals -- so called \emph{blockers} -- at \SI{107}{MHz} and \SI{104}{MHz}.
			\item These very strong blockers mix to: $2 \cdot \SI{107}{MHz} - \SI{104}{MHz} = \SI{110}{MHz}$.
			\item The mixer product of the blockers disturbs the input signal and decreases its \ac{SNR}.
			\item This effect is called \index{intermodulation} \textbf{intermodulation}.
		\end{itemize}
	\end{itemize}

	We will not bother with the theory behind this. However, the consequences are:
	\begin{itemize}
		\item The mixer input should be filtered to eliminate out-of-band disturbances.
		\item The input signal power must not exceed a certain limit. This characteristic is given in mixer datasheets as the \index{interception point} \textbf{interception point of the 3rd order (IP3)}.
		\item Too strong signals will cause intermodulation.
	\end{itemize}
\end{excursus}

\subsection{Zero-Intermediate-Frequency}

Figure \ref{fig:ch05:trx_if_arch} considers different receiver architectures with a variation in \acf{IF} stages.
\begin{itemize}
	\item Superheterodyne receivers allow the implementation of high quality filter to archive a good selectivity.
	\item However, the cost of the implementation increases with an increasing number of \ac{IF} stages.
	\item A common implementation in modern digital communication systems is omitting the \ac{IF} stages can convert directly from \ac{RF} to the baseband.
	\item The filtering is accomplished in the digital signal processing chain.
\end{itemize}

\begin{figure}[H]
	\centering
	\begin{adjustbox}{scale=0.8}
		\begin{circuitikz}
			\node[ampshape](RFAmplifier){};
			\node[mixer, right=2cm of RFAmplifier](Mixer){};
			\node[oscillator, below=1cm of Mixer](LO){};
			\node[ampshape, right=2.5cm of Mixer](BBAmplifier){};
			\node[adcshape, right=2.5cm of BBAmplifier](ADC){};
			\node[block, draw, right=1cm of ADC](Baseband){Digital signal\\ processing};
			
			\draw (LO.south) node[below,align=center,yshift=-5mm]{\acs{LO}};
			\draw (RFAmplifier.south) node[below,align=center,yshift=-5mm]{\acs{RF}\\ amplifier};
			\draw (Mixer.north) node[above,align=center,yshift=3mm]{Mixer};
			\draw (BBAmplifier.south) node[below,align=center,yshift=-5mm]{Baseband\\ amplifier};
			\draw (ADC.south) node[below,align=center,yshift=-5mm]{\acs{ADC}};
			
			\draw (RFAmplifier.west) to[bandpass] ++(-2cm,0) node[rxantenna,xscale=-1]{};
			
			\draw[-latex] (LO.north) -- (Mixer.south);
			\draw[-latex] (RFAmplifier.east) -- node[midway,above,align=center]{\acs{RF}\\ signal} (Mixer.west);
			\draw[-latex] (Mixer.east) to[lowpass] ++(2cm,0) -- (BBAmplifier.west);
			\draw[-latex] (BBAmplifier.east) -- node[midway,above,align=center]{Baseband\\ signal} (ADC.west);
			\draw[-latex] (ADC.east) -- (Baseband.west);
		\end{circuitikz}
	\end{adjustbox}
	\caption{Zero-\acs{IF} receiver}
\end{figure}

\begin{itemize}
	\item The \ac{RF} is directly converted to the baseband close to a frequency of zero. The baseband can be seen as a \ac{IF} of zero.
	\item The \ac{LO} is tuned directly to the \ac{RF} frequency.
	\item The receiver architecture is called \index{zero-IF} \textbf{zero-\acs{IF}} or \index{direct conversion receiver} \textbf{direct conversion receiver}.
\end{itemize}

This special design requires a careful consideration. Assume that the \ac{RF} signal is monochromatic. The baseband signal $x_B(t)$ is:
\begin{equation}
	x_B(t) = \underbrace{\hat{X}_{RF} \cos\left(\omega_{RF} t + \varphi_{RF}\right)}_{= x_{RF}(t)} \cdot \underbrace{\cos\left(\omega_{RF} t\right)}_{= x_{RF}(t) \text{ with } \omega_{LO} = \omega_{RF}}
\end{equation}

\begin{itemize}
	\item If the phase shift $\varphi_{RF}$ of the \ac{RF} signal is $0$, the \ac{RF} signal can be received without problems.
	\item If the phase shift $\varphi_{RF}$ of the \ac{RF} signal is $\pm \frac{\pi}{2}$, the \ac{RF} signal is orthogonal to the \ac{LO} signal. The baseband signal be zero. The \ac{RF} signal cannot be received.
	\item Values of $0 < \varphi_{RF} < \frac{\pi}{2}$ reduce the amplitude of the baseband signal, which decreases the \ac{SNR}.
\end{itemize}

\begin{proof}{}
	\begin{equation*}
		\begin{split}
			x_B(t) &= \hat{X}_{RF} \cos\left(\omega_{RF} t + \frac{\pi}{2}\right) \cdot \cos\left(\omega_{RF} t\right) \\
			 & \quad \text{Fourier transform} \\
			\underline{X}_B\left(j\omega\right) &= \hat{X}_{RF} \pi^2 \left( e^{j \frac{\pi}{2}} \delta\left(\omega-\omega_{RF}\right) + e^{-j \frac{\pi}{2}} \delta\left(\omega+\omega_{RF}\right) \right) * \left( \delta\left(\omega-\omega_{RF}\right) + \delta\left(\omega+\omega_{RF}\right) \right) \\
			 &= \hat{X}_{RF} \pi^2 \left( \underbrace{e^{j \frac{\pi}{2}} \delta\left(\omega\right) + e^{-j \frac{\pi}{2}} \delta\left(\omega\right)}_{\text{Baseband signal at zero \acs{IF}}} + \underbrace{e^{j \frac{\pi}{2}} \delta\left(\omega-2\omega_{RF}\right) + e^{-j \frac{\pi}{2}} \delta\left(\omega+2\omega_{RF}\right)}_{\text{Eliminated by the \ac{LPF}}} \right) \\
			 &= \hat{X}_{RF} \pi^2 \left( \underbrace{j \delta\left(\omega\right) - j \delta\left(\omega\right)}_{= 0} \right) \\
			 &= 0
		\end{split}
	\end{equation*}
	
	If the \ac{RF} and \ac{LO} signals are orthogonal, no signal will be present in a band-limited (\ac{LPF}) baseband signal.
\end{proof}

The problem is that the phase of the \ac{RF} $\varphi_{RF}$ is not known. The phase of the \ac{LO} must be aligned to the \ac{RF} signal phase to reduce $\varphi_{RF}$ to zero. 

To solve this issue, the mixer principle of the zero-\acs{IF} mixer must be adapted.
\begin{itemize}
	\item The \ac{RF} signal is split and fed into two mixer branches.
	\item One of the mixers multiplies the \ac{RF} signal with the \ac{LO} signal.
	\item The other mixer multiplies the \ac{RF} signal with a $\frac{\pi}{2}$-phase-shifted copy of the \ac{LO} signal.
	\item The \ac{LO} signals of the mixers are orthogonal.
	\item Due to the orthogonality of the \ac{LO} signals, all variations of the \ac{RF} signal phase shift $\varphi_{RF}$ can be reliably received without \ac{SNR} degradation.
\end{itemize}
This mixer architecture is called \index{coherent mixer} \textbf{coherent}.

\begin{figure}[H]
	\centering
	\begin{adjustbox}{scale=0.8}
		\begin{circuitikz}
			\node[mixer](MixI) at(5cm,3cm) {};
			\node[mixer](MixQ) at(5cm,-3cm) {};
			\node[oscillator](LO) at(3cm,0cm){};
			\node[block, draw, minimum height=8cm](DSP) at(11cm,0cm){Digital\\ signal\\ processing};
			
			\draw (LO.south) node[below,align=center,yshift=-3mm]{\acs{LO}\\ $\omega_{LO} = \omega_{RF}$};
			\draw (MixI.north) node[above,align=center,yshift=1cm]{In-phase (\acs{I}) branch};
			\draw (MixQ.south) node[below,align=center,yshift=-1cm]{Quadrature (\acs{Q}) branch};
			
			\draw (0cm,0cm) node[left,align=right]{Input\\ signal} to[short,o-*] (1cm,0cm);
			\draw (1cm,0cm) to[short] ([xshift=-4cm] MixI) to[lowpass] (MixI.west);
			\draw (1cm,0cm) to[short] ([xshift=-4cm] MixQ) to[lowpass] (MixQ.west);
			
			\draw (LO.east) to[short,-*] (5cm,0cm);
			\draw (5cm,0cm) to[short] (MixI.south);
			\draw (5cm,0cm) to[phaseshifter,l=$\SI{90}{\degree}$] (MixQ.north);
			
			\draw (MixI.east) to[amp] ++(2cm,0cm) to[adc] ([yshift=3cm] DSP.west);
			\draw (MixQ.east) to[amp] ++(2cm,0cm) to[adc] ([yshift=-3cm] DSP.west);
		\end{circuitikz}
	\end{adjustbox}
	\caption{Coherent mixer suitable for zero-\acs{IF} receiver architectures (IQ demodulator)}
	\label{fig:ch05:iq_down_circuit}
\end{figure}

The coherent mixer (Figure \ref{fig:ch05:iq_down_circuit}), also called \index{IQ demodulator} \textbf{IQ demodulator}, consists of two branches (also called paths):
\begin{itemize}
	\item The \ac{I} path mixes the original \ac{LO} signal to the replica of the \ac{RF} signal.
	\item The \ac{Q} path mixes the $\frac{\pi}{2}$-phase-shifted \ac{LO} signal to the replica of the \ac{RF} signal.
\end{itemize}
The coherent mixer is capable of receiving all variations of the \ac{RF} signal phase shift $\varphi_{RF}$, while the amplitude is kept intact.

\begin{excursus}{Non-coherent demodulation}
	Retain the phase information is important for any kind of \ac{PM}. Therefore, signals must be demodulated coherently.
	
	For \ac{AM} modulations, it is sufficient to extract the envelope of the modulated \ac{RF} signal (see Figure \ref{fig:ch05:dsbtc}). A non-coherent demodulator reduces the hardware complexity, as the following example circuit shows.
	\begin{figure}[H]
		\centering
		\begin{circuitikz}
			\draw (0,0) node[left,align=right,xshift=-3mm]{Modulated\\ \acs{RF} signal} to[short,o-] ++(1,0) to[empty diode,l=$D$] ++(2,0) to[R,l=$R$] ++(2,0) to[short,-o] ++(1,0) node[right,align=left,xshift=3mm]{Demodulated\\ baseband signal\\ (\ac{RF} envelope)};
			\draw (5,0) to[C,l=$C$,*-] ++(0,-2) node[rground]{};
		\end{circuitikz}
	\end{figure}

	It consists of a simple non-linear component (diode) and a $RC$-low-pass filter. The diode implements a mixer, which mixes the \ac{RF} signal down to the zero-\acs{IF} baseband. The low-apss eliminates the high-frequent mirror frequencies. The circuit is similar to that shown in Figure \ref{fig:ch05:pass_unbal_mixer}.
	
	\vspace{0.5em}
	
	\textbf{But if the diode is a mixer, where is the \ac{LO}?} Not every \ac{AM} is suitable for non-coherent demodulation. Only those transmitting the carrier like the \ac{DSB-TC} may be used. The \ac{RF} signal consists of the modulated sidebands containing the information and the carrier. At the non-linear component, the carrier mixes with the sidebands. The sideband are moved to zero-\ac{IF}.
	
	\vspace{0.5em}
	
	Non-coherent demodulation has thus special requirements on the \ac{RF} signal. Because, modern digital communication systems use some kind of \ac{PM}, they will likely implement coherent demodulation. However, in some applications employing a digital \ac{AM}, non-coherent demodulators are still used to reduce the hardware cost.
\end{excursus}

\begin{fact}
	Pure \ac{AM} signals can be demodulated either coherently or non-coherently. \ac{PM} signals or mixed \ac{AM} and \ac{PM} signals require a coherent demodulation, because a non-coherent demodulation drops the signal phase.
\end{fact}

\subsection{Mixing Complex-Valued Baseband Signals}

\subsubsection{Down-Conversion}

A coherent mixer (Figure \ref{fig:ch05:iq_down_circuit}) retains the phase of the \ac{RF} signal. The phase information is coded into the \ac{I} and \ac{Q} parts of the baseband signal.

Let's consider the \ac{RF} signal $x_{RF}(t) \TransformHoriz \underline{X}_{RF}\left(j\omega\right)$ contains the information whose power is concentrated close to the \ac{RF} frequency $\omega_{RF}$. $\underline{X}_{RF}\left(j\omega\right)$ devolves into a positive and negative frequency part.
\begin{equation}
	\underline{X}_{RF}\left(j\omega\right) = \begin{cases}
		\underline{X}_{RF}^{+}\left(j\omega\right) & \quad \text{ if } \omega \geq 0 \\
		\underline{X}_{RF}^{-}\left(j\omega\right) & \quad \text{ if } \omega \leq 0
	\end{cases}
\end{equation}
$x_{RF}(t)$ is real-valued. Therefore, $\underline{X}_{RF}^{+}\left(j\omega\right) = \overline{\underline{X}_{RF}^{-}\left(-j\omega\right)}$. So, both the positive and negative part in fact carry the same information.

Now, the \ac{RF} signal is mixed down to the baseband by a coherent mixer.
\begin{itemize}
	\item The \ac{I} path of the coherent mixer (Figure \ref{fig:ch05:iq_down_circuit}):
	\begin{equation}
		\begin{split}
			x_{B,I}(t) &= x_{RF}(t) \cdot \cos\left(\omega_{RF} t\right) \\
			 &\quad \text{Fourier transform:} \\
			\underline{X}_{B,I}\left(j\omega\right) &= \underline{X}_{RF}\left(j\omega\right) * \left(\delta\left(\omega-\omega_{RF}\right) + \delta\left(\omega+\omega_{RF}\right)\right) \pi \\
			 &= \pi \left(\underline{X}_{RF}\left(j\omega-j\omega_{RF}\right) + \underline{X}_{RF}\left(j\omega+j\omega_{RF}\right)\right) \\
			 &= \pi \left(\underbrace{\underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right) + \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right)}_{\text{\acs{I} component of the baseband signal}} \right. \\ &\qquad + \left. \underbrace{\underline{X}_{RF}^{+}\left(j\omega-j\omega_{RF}\right) + \underline{X}_{RF}^{-}\left(j\omega+j\omega_{RF}\right)}_{\text{Mirror frequencies close to $\pm 2 \omega_{RF}$, eliminated by \acs{LPF}}} \right) \\
			 &\quad \text{After the \acs{LPF}:} \\
			 &= \pi \left(\underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right) + \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right) \right)
		\end{split}
	\end{equation}
	\item The \ac{Q} path of the coherent mixer (Figure \ref{fig:ch05:iq_down_circuit}):
	\begin{equation}
		\begin{split}
			x_{B,Q}(t) &= x_{RF}(t) \cdot \underbrace{\cos\left(\omega_{RF} t + \frac{\pi}{2}\right)}_{= \sin\left(\omega_{RF} t\right)} \\
			 &\quad \text{Fourier transform:} \\
			\underline{X}_{B,Q}\left(j\omega\right) &= \underline{X}_{RF}\left(j\omega\right) * \left(e^{j\frac{\pi}{2}} \delta\left(\omega-\omega_{RF}\right) + e^{-j\frac{\pi}{2}} \delta\left(\omega+\omega_{RF}\right)\right) \pi \\
			 &= \pi \left(e^{j\frac{\pi}{2}}\underline{X}_{RF}\left(j\omega-j\omega_{RF}\right) + e^{-j\frac{\pi}{2}}\underline{X}_{RF}\left(j\omega+j\omega_{RF}\right)\right) \\
			 &= \pi \left(\underbrace{e^{j\frac{\pi}{2}} \underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right) + e^{-j\frac{\pi}{2}} \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right)}_{\text{\acs{I} component of the baseband signal}} \right. \\ &\qquad + \left. \underbrace{e^{j\frac{\pi}{2}} \underline{X}_{RF}^{+}\left(j\omega-j\omega_{RF}\right) + e^{-j\frac{\pi}{2}} \underline{X}_{RF}^{-}\left(j\omega+j\omega_{RF}\right)}_{\text{Mirror frequencies close to $\pm 2 \omega_{RF}$, eliminated by \acs{LPF}}} \right) \\
			 &\quad \text{After the \acs{LPF}:} \\
			 &= \pi \left(e^{j\frac{\pi}{2}} \underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right) + e^{-j\frac{\pi}{2}} \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right) \right) \\
			 &= j \pi \left( \underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right) - \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right) \right)
		\end{split}
	\end{equation}
	\item Both $\underline{X}_{B,I}\left(j\omega\right)$ and $\underline{X}_{B,Q}\left(j\omega\right)$ are Hermitian and fulfil the symmetry rules.
	\item Thus, both $x_{B,I}(t)$ and $x_{B,Q}(t)$ are real-valued signals. \textit{Anything else would make no sense, because the \ac{I} and \ac{Q} components exist as physical signals at the mixer outputs.}
	\item Now, the \ac{I} and \ac{Q} components are composed to a complex-valued signal:
	\begin{equation}
		\underline{x}_B(t) = x_{B,I}(t) + j \cdot x_{B,Q}(t)
	\end{equation}
	\item The composition can be thought of interpreting the \ac{I} component $x_{B,I}(t)$ as the real part of $\underline{x}_B(t)$ and the \ac{Q} component $x_{B,Q}(t)$ as the imaginary part of $\underline{x}_B(t)$. This interpretation usually happens in the digital signal processing.
	\item The effect of this re-interpretation becomes clear in the frequency-domain:
	\begin{equation}
		\begin{split}
			\underline{X}_{B}\left(j\omega\right) &= \mathcal{F}\left\{\underline{x}_B(t)\right\} = \mathcal{F}\left\{x_{B,I}(t) + j \cdot x_{B,Q}(t)\right\} \\
			 &= \mathcal{F}\left\{x_{B,I}(t)\right\} + j \cdot \mathcal{F}\left\{\cdot x_{B,Q}(t)\right\} \\
			 &= \pi \left(\underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right) + \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right) \right) \\ & \qquad + \underbrace{j^2}_{= -1} \pi \left( \underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right) - \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right) \right) \\
			 &= \pi \left( \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right) + \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right) \right. \\ & \qquad + \left. \underbrace{\underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right) - \underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right)}_{= 0} \right) \\
			 &= 2 \pi \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right)
		\end{split}
	\end{equation}
	\item $\underline{X}_{B}\left(j\omega\right)$ is not Hermitian. $\underline{x}_B(t)$ is complex-valued.
	\item In $\underline{X}_{B}\left(j\omega\right)$ the negative part of the baseband signal $\underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right)$ is completely eliminated.
	\item In contrast to that, both $\underline{X}_{B,I}\left(j\omega\right)$ and $\underline{X}_{B,Q}\left(j\omega\right)$ contained the two equivalent parts $\underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right)$ and $\underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right)$.
\end{itemize}

\textbf{In fact, the band around the \ac{RF} frequency $\omega_{RF}$ is shifted down to zero-\acs{IF} as a whole without losing the information contained. This is the reason, why the phase information of the \ac{RF} signal is retained.}


\begin{figure}[H]
	\centering
	
	\subfloat[The \ac{RF} signal and \acs{LO} signal in the frequency-domain] {
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.1\textheight},
				width=0.9\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$|\underline{X}_{RF}|$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-4.6,
				xmax=4.6,
				ymin=0,
				ymax=1.2,
				xtick={-1.9, 0, 1.9},
				xticklabels={$-\omega_{RF}$, $0$, $\omega_{RF}$},
				ytick={0},
			]
				\draw[red, thick] (axis cs:-1.8,0) -- (axis cs:-2,0.7) node[above left,align=right]{$\underline{X}_{RF}^{-}$} -- (axis cs:-2.5,0);
				\draw[red, thick] (axis cs:1.8,0) -- (axis cs:2,0.7) node[above right,align=left]{$\underline{X}_{RF}^{+}$} -- (axis cs:2.5,0);
				
				\draw[-latex, blue, very thick] (axis cs:-1.9,0) -- (axis cs:-1.9,1) node[above,align=center]{\acs{LO}};
				\draw[-latex, blue, very thick] (axis cs:1.9,0) -- (axis cs:1.9,1) node[above,align=center]{\acs{LO}};
			\end{axis}
		\end{tikzpicture}
	}
	
	\subfloat[\acs{I} component of the baseband signal in the frequency-domain] {
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.12\textheight},
				width=0.9\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$\Re\left\{\underline{X}_{B,I}\right\}$ (real)},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-4.6,
				xmax=4.6,
				ymin=0,
				ymax=1.2,
				xtick={-3.8, -1.9, 0, 1.9, 3.8},
				xticklabels={$-2\omega_{RF}$, $-\omega_{RF}$, $0$, $\omega_{RF}$, $2\omega_{RF}$},
				ytick={0},
			]
				% X-
				\draw[red, dashed, thick] (axis cs:-3.7,0) -- (axis cs:-3.9,0.7) node[above right,align=left]{Eliminated by \acs{LPF}} -- (axis cs:-4.4,0);
				\draw[red, thick] (axis cs:0.1,0) -- (axis cs:-0.1,0.7) -- (axis cs:-0.6,0);
				
				% X+
				\draw[red, dashed, thick] (axis cs:3.7,0) -- (axis cs:3.9,0.7) node[above left,align=right]{Eliminated by \acs{LPF}} -- (axis cs:4.4,0);
				\draw[red, thick] (axis cs:-0.1,0) -- (axis cs:0.1,0.7) -- (axis cs:0.6,0);
			\end{axis}
		\end{tikzpicture}
	}

	\subfloat[\acs{Q} component of the baseband signal in the frequency-domain] {
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.2\textheight},
				width=0.9\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$\Im\left\{\underline{X}_{B,Q}\right\}$ (imaginary)},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-4.6,
				xmax=4.6,
				ymin=-1.2,
				ymax=1.2,
				xtick={-3.8, -1.9, 0, 1.9, 3.8},
				xticklabels={$-2\omega_{RF}$, $-\omega_{RF}$, $0$, $\omega_{RF}$, $2\omega_{RF}$},
				ytick={0},
			]
				% X-
				\draw[red, dashed, thick] (axis cs:-3.7,0) -- (axis cs:-3.9,-0.7) node[below right,align=left]{Eliminated by \acs{LPF}} -- (axis cs:-4.4,0);
				\draw[red, thick] (axis cs:0.1,0) -- (axis cs:-0.1,0.7) -- (axis cs:-0.6,0);
				
				% X+
				\draw[red, dashed, thick] (axis cs:3.7,0) -- (axis cs:3.9,0.7) node[above left,align=right]{Eliminated by \acs{LPF}} -- (axis cs:4.4,0);
				\draw[red, thick] (axis cs:-0.1,0) -- (axis cs:0.1,-0.7) -- (axis cs:0.6,0);
			\end{axis}
		\end{tikzpicture}
	}

	\subfloat[Complex-valued baseband signal in the frequency-domain] {
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.1\textheight},
				width=0.9\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$|\underline{X}_{B}|$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-4.6,
				xmax=4.6,
				ymin=0,
				ymax=1.2,
				xtick={-3.8, -1.9, 0, 1.9, 3.8},
				xticklabels={$-2\omega_{RF}$, $-\omega_{RF}$, $0$, $\omega_{RF}$, $2\omega_{RF}$},
				ytick={0},
			]
				\draw[red, thick] (axis cs:-0.1,0) -- (axis cs:0.1,0.7) -- (axis cs:0.6,0);
			\end{axis}
		\end{tikzpicture}
	}
	
	\caption{Coherent down-conversion}
	\label{fig:ch05:iq_down_freqdomain}
\end{figure}

\subsubsection{Up-Conversion}

The process can be reversed.
\begin{itemize}
	\item A complex-valued baseband signal can be mixed to a real-valued \ac{RF} signal.
	\item The spectrum of the baseband signal is shifted up to $\omega_{RF}$ as a whole without losing any information.
	\item The device mixing the complex baseband up to the \ac{RF} band is called \index{IQ modulator} \textbf{IQ modulator}.
	\item The \emph{IQ modulator} is the counterpart of the \emph{IQ demodulator} (\emph{coherent mixer}).
\end{itemize}

\begin{figure}[H]
	\centering
	\begin{adjustbox}{scale=0.8}
		\begin{circuitikz}
			\node[block, draw, minimum height=8cm](DSP) at(0cm,0cm){Digital\\ signal\\ processing};
			\node[mixer](MixI) at([shift={(6cm,3cm)}] DSP.east) {};
			\node[mixer](MixQ) at([shift={(6cm,-3cm)}] DSP.east) {};
			\node[oscillator](LO) at([shift={(4cm,0cm)}] DSP.east){};
			\node[adder](Add) at([shift={(10cm,0cm)}] DSP.east){};
			
			\draw (LO.south) node[below,align=center,yshift=-3mm]{\acs{LO}\\ $\omega_{LO} = \omega_{RF}$};
			\draw (MixI.north) node[above,align=center,yshift=1cm]{In-phase (\acs{I}) branch};
			\draw (MixQ.south) node[below,align=center,yshift=-1cm]{Quadrature (\acs{Q}) branch};
			
			\draw (LO.east) to[short,-*] ([shift={(6cm,0cm)}] DSP.east);
			\draw ([shift={(6cm,0cm)}] DSP.east) to[short] (MixI.south);
			\draw ([shift={(6cm,0cm)}] DSP.east) to[phaseshifter,l=$\SI{90}{\degree}$] (MixQ.north);
			
			\draw ([shift={(0cm,3cm)}] DSP.east) to[dac] ++(2cm,0cm) to[lowpass] ++(2cm,0cm) to[amp] (MixI.west);
			\draw ([shift={(0cm,-3cm)}] DSP.east) to[dac] ++(2cm,0cm) to[lowpass] ++(2cm,0cm) to[amp] (MixQ.west);
			
			\draw[-latex] (MixI.east) to[lowpass] ++(2cm,0cm) -| (Add.north);
			\draw[-latex] (MixQ.east) to[lowpass] ++(2cm,0cm) -| (Add.south);
			\draw[-latex] (Add.east) -- ++(1cm,0cm) node[right,align=left]{\acs{RF}\\ signal};
		\end{circuitikz}
	\end{adjustbox}
	\caption{IQ modulator mixing up a complex-valued zero-\acs{IF} baseband}
	\label{fig:ch05:iq_up_circuit}
\end{figure}


\begin{figure}[H]
	\centering
	
	\subfloat[Complex-valued baseband signal and \acs{LO} signal in the frequency-domain] {
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.1\textheight},
				width=0.9\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$|\underline{X}_{B}|$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-3,
				xmax=3,
				ymin=0,
				ymax=1.2,
				xtick={-1.9, 0, 1.9},
				xticklabels={$-\omega_{RF}$, $0$, $\omega_{RF}$},
				ytick={0},
			]
				\draw[red, thick] (axis cs:-0.1,0) -- (axis cs:0.1,0.7) -- (axis cs:0.6,0);
				
				\draw[-latex, blue, very thick] (axis cs:-1.9,0) -- (axis cs:-1.9,1) node[above,align=center]{\acs{LO}};
				\draw[-latex, blue, very thick] (axis cs:1.9,0) -- (axis cs:1.9,1) node[above,align=center]{\acs{LO}};
			\end{axis}
		\end{tikzpicture}
	}
	
	\subfloat[The \ac{RF} signal in the frequency-domain] {
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.1\textheight},
				width=0.9\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$|\underline{X}_{RF}|$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-3,
				xmax=3,
				ymin=0,
				ymax=1.2,
				xtick={-1.9, 0, 1.9},
				xticklabels={$-\omega_{RF}$, $0$, $\omega_{RF}$},
				ytick={0},
			]
				\draw[red, thick] (axis cs:-1.8,0) -- (axis cs:-2,0.7) -- (axis cs:-2.5,0);
				\draw[red, thick] (axis cs:1.8,0) -- (axis cs:2,0.7) -- (axis cs:2.5,0);
			\end{axis}
		\end{tikzpicture}
	}
	
	\caption{Up-conversion of a complex-valued baseband signal}
	\label{fig:ch05:iq_up_freqdomain}
\end{figure}

The \ac{RF} signal is always real-valued and contains the basebased shifted as a whole (including its non-symmetric positive and negative parts) to the \ac{RF} frequency $\omega_{RF}$.

\begin{proof}{IQ modulation}
	The complex-valued baseband signal $\underline{x}_{B}(t)$ can be decomposed into its real and imaginary values, the \ac{I} and \ac{Q} components.
	\begin{equation}
		\underline{x}_{B}(t) = x_{B,I}(t) + j \cdot x_{B,Q}(t)
	\end{equation}
	In the frequency-domain:
	\begin{equation}
		\underline{X}_{B}\left(j\omega\right) = \underline{X}_{B,I}\left(j\omega\right) + j \cdot \underline{X}_{B,Q}\left(j\omega\right)
		\label{eq:ch05:baseband_tx_freqdom}
	\end{equation}
	
	Both $\underline{X}_{B,I}\left(j\omega\right)$ and $\underline{X}_{B,Q}\left(j\omega\right)$ must be Hermitian (real-valued in time-domain) and can be decomposed into:
	\begin{subequations}
		\begin{align}
			\underline{X}_{B,I}\left(j\omega\right) &= \begin{cases}
				\underline{X}_{B,I}^{+}\left(j\omega\right) & \quad \text{ if } \omega \geq 0 \\
				\underline{X}_{B,I}^{-}\left(j\omega\right) & \quad \text{ if } \omega \leq 0
			\end{cases} \\
			\underline{X}_{B,Q}\left(j\omega\right) &= \begin{cases}
				\underline{X}_{B,Q}^{+}\left(j\omega\right) & \quad \text{ if } \omega \geq 0 \\
				\underline{X}_{B,Q}^{-}\left(j\omega\right) & \quad \text{ if } \omega \leq 0
			\end{cases}
		\end{align}
	\end{subequations}

	Following conditions must be true to fulfil \eqref{eq:ch05:baseband_tx_freqdom} and the symmetry rules $\underline{X}_{B,I}\left(j\omega\right) = \overline{\underline{X}_{B,I}\left(-j\omega\right)}$ and $\underline{X}_{B,Q}\left(j\omega\right) = \overline{\underline{X}_{B,Q}\left(-j\omega\right)}$:
	\begin{subequations}
		\begin{align}
			\underline{X}_{B,I}^{+}\left(j\omega\right) = j \underline{X}_{B,Q}^{+}\left(j\omega\right) &= \begin{cases}
				\frac{1}{2} \underline{X}_{B}\left(j\omega\right) & \quad \text{ if } \omega \geq 0 \\
				0 & \quad \text{ if } \omega \leq 0
			\end{cases} \\
			\underline{X}_{B,I}^{-}\left(j\omega\right) = -j \underline{X}_{B,Q}^{-}\left(j\omega\right) &= \begin{cases}
				0 & \quad \text{ if } \omega \geq 0 \\
				\frac{1}{2} \overline{\underline{X}_{B}\left(-j\omega\right)} & \quad \text{ if } \omega \leq 0
			\end{cases}
		\end{align}
	\end{subequations}

	The \ac{I} component mixed up to the \ac{RF} band is:
	\begin{equation}
		\begin{split}
			x_{RF,I}(t) &= x_{B,I}(t) \cdot \cos\left(\omega_{RF} t\right) \\
			\underline{X}_{RF,I}\left(j\omega\right) &= \underline{X}_{B,I}\left(j\omega\right) * \left(\delta\left(\omega-\omega_{RF}\right) + \delta\left(\omega+\omega_{RF}\right)\right) \pi \\
			 &= \pi \left(\underline{X}_{B,I}^{+}\left(j\omega-j\omega_{RF}\right) + \underline{X}_{B,I}^{-}\left(j\omega+j\omega_{RF}\right)\right. \\ &\qquad \left. + \underline{X}_{B,I}^{-}\left(j\omega-j\omega_{RF}\right) + \underline{X}_{B,I}^{+}\left(j\omega+j\omega_{RF}\right)\right) \\
			 &= \pi \left(\frac{1}{2} \underline{X}_{B}\left(j\omega-j\omega_{RF}\right) + \frac{1}{2} \overline{\underline{X}_{B}\left(-j\omega-j\omega_{RF}\right)}\right. \\ &\qquad \left. + \frac{1}{2} \overline{\underline{X}_{B}\left(-j\omega+j\omega_{RF}\right)} + \frac{1}{2} \underline{X}_{B}\left(j\omega+j\omega_{RF}\right)\right)
		\end{split}
	\end{equation}
	
	The \ac{Q} component mixed up to the \ac{RF} band is:
	\begin{equation}
		\begin{split}
			x_{RF,Q}(t) &= x_{B,Q}(t) \cdot \underbrace{\cos\left(\omega_{RF} t + \frac{\pi}{2}\right)}_{= \sin\left(\omega_{RF} t\right)} \\
			\underline{X}_{RF,Q}\left(j\omega\right) &= \underline{X}_{B,Q}\left(j\omega\right) * \left(e^{j\frac{\pi}{2}} \delta\left(\omega-\omega_{RF}\right) + e^{-j\frac{\pi}{2}} \delta\left(\omega+\omega_{RF}\right)\right) \pi \\
			&= \pi \left(j \underline{X}_{B,Q}^{+}\left(j\omega-j\omega_{RF}\right) - j \underline{X}_{B,Q}^{-}\left(j\omega+j\omega_{RF}\right)\right. \\ &\qquad \left. + j \underline{X}_{B,Q}^{-}\left(j\omega-j\omega_{RF}\right) - j \underline{X}_{B,Q}^{+}\left(j\omega+j\omega_{RF}\right)\right) \\
			&= \pi \left(\frac{1}{2} \underline{X}_{B}\left(j\omega-j\omega_{RF}\right) + \frac{1}{2} \overline{\underline{X}_{B}\left(-j\omega-j\omega_{RF}\right)}\right. \\ &\qquad \left. - \frac{1}{2} \overline{\underline{X}_{B}\left(-j\omega+j\omega_{RF}\right)} - \frac{1}{2} \underline{X}_{B}\left(j\omega+j\omega_{RF}\right)\right)
		\end{split}
	\end{equation}
	
	The sum of both components mixed up to the \ac{RF} band is:
	\begin{equation}
		\begin{split}
			x_{RF}(t) &= x_{RF,I}(t) + x_{RF,Q}(t) \\
			\underline{X}_{RF}\left(j\omega\right) &= \underline{X}_{RF,I}\left(j\omega\right) + \underline{X}_{RF,Q}\left(j\omega\right) \\
			 &= \pi \left( \underline{X}_{B}\left(j\omega-j\omega_{RF}\right) + \overline{\underline{X}_{B}\left(-j\omega-j\omega_{RF}\right)} \right) \\
			 &= \pi \left( \underbrace{\underline{X}_{B}\left(j\left(\omega-\omega_{RF}\right)\right)}_{\text{Baseband shifted to $+\omega_{RF}$}} + \underbrace{\overline{\underline{X}_{B}\left(-j\left(\omega+\omega_{RF}\right)\right)}}_{\text{Conjugate complex baseband mirrored and shifted to $-\omega_{RF}$}} \right) 
		\end{split}
	\end{equation}
	
	\begin{itemize}
		\item $\underline{X}_{RF}\left(j\omega\right)$ is Hermitian. $x_{RF}(t)$ is therefore real-valued.
		\item $\underline{X}_{RF}\left(j\omega\right)$ contains the baseband shifted up to $\omega_{RF}$ as a whole leaving amplitudes and phases of both the positive and negative frequencies of the baseband intact.
	\end{itemize}
\end{proof}

\section{Digital Modulation Techniques}

\begin{itemize}
	\item The goal of a digital communication system is conveying data from the sender to the receiver.
	\item The source of the data is somewhere outside the radio.
	\item \textbf{The \index{radio} \emph{radio} is the part of a digital communication system concerning with data coding, signal processing and \ac{RF} modulation.}
	\item Example sources of data:
	\begin{itemize}
		\item Higher protocol layers, especially layer 2 (data link layer)
		\item Buttons (e.g. remote control)
		\item External devices (the radio acts as a modem)
		\item \ac{PCM}-encoded voice
		\item ...
	\end{itemize}
	\item In general, digital data is any kind of time-discrete and value-discrete information.
	\begin{itemize}
		\item In a computer system the smallest chunk of data is one bit. A bit stream is handed over to the radio which modulates it onto a carrier.
		\item We will stick to bits to represent information for explanatory reasons. However, keep in mind that data can be any kind of time-discrete and value-discrete information.
	\end{itemize}
\end{itemize}

After we have learnt about the theory of modulation, let's have a look at practical modulation techniques for digital data.

\subsection{Symbols}

\subsubsection{Symbol Concept}

All digital modulation techniques take time-discrete and value-discrete data.
\begin{itemize}
	\item The modulation changes a property (amplitude, phase) of the carrier for a certain amount of time.
	\item This time is the \index{symbol period} \textbf{symbol period} $T_{sym}$. Its inverse is the \index{symbol rate} \textbf{symbol rate} $f_{sym}$.
	\item We already know these terms from the chapter about sampling.
	\begin{itemize}
		\item The time-discrete data is transferred back to a time-continuous, but still value-discrete domain.
		\item Each instantaneous value of the time-discrete data points is prolonged to the symbol period $T_{sym}$. In fact, it becomes a rectangle function.
		\item The result is a series of symbols $x_{sym}(t)$.
	\end{itemize}
\end{itemize}

The process of converting time-discrete symbols to time-continuous rectangle functions can be mathematically described by:
\begin{equation}
	x_{sym}(t) = \sum\limits_{n} x_{sym}[n] \cdot \mathrm{rect}_{T_{sym}}\left(t - n T_{sym}\right)
	\label{eq:ch05:sym_rect}
\end{equation}

\begin{excursus}{The rectangle function}
	\begin{equation}
		\mathrm{rect}_{T_{sym}}\left(t\right) = \frac{1}{T_{sym}} \begin{cases}
			0 &\quad \text{if } |t| > \frac{1}{2} T_{sym}, \\
			1 &\quad \text{if } |t| \leq \frac{1}{2} T_{sym}
		\end{cases}
	\end{equation}
\end{excursus}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.15\textheight},
			width=0.6\linewidth,
			scale only axis,
			xlabel={$t$},
			ylabel={$x_{sym}(t)$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=outer north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-0.5,
			xmax=9.5,
			ymin=0,
			ymax=1.7,
			%xtick={0,0.125,...,1},
			%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
			%ytick={0},
			ytick={0, 0.25, 0.5, 0.75, 1},
			yticklabels={0, $0$, $1$, $2$, $3$},
		]
			\draw[blue] (axis cs:0,1) -- (axis cs:2,1) -- (axis cs:2,0.25) -- (axis cs:4,0.25) -- (axis cs:4,0.75) -- (axis cs:6,0.75) -- (axis cs:6,0.5) -- (axis cs:8,0.5) -- (axis cs:8,1) -- (axis cs:9,1);
			
			\draw[latex-latex] (axis cs:2,1.1) -- node[midway,above,align=center]{Symbol period $T_{sym}$} (axis cs:4,1.1);
			
%			\draw (1,-0.5) node{11};
%			\draw (3,-0.5) node{00};
%			\draw (5,-0.5) node{10};
%			\draw (7,-0.5) node{01};
		\end{axis}
	\end{tikzpicture}
	\caption[Series of symbols]{Series of symbols of the set $\left\{0, 1, 2, 3\right\}$. The set is exemplary and can be any set of discrete values.}
\end{figure}

\subsubsection{Symbol Mapping}

Assume that the data is represented by a $N$-dimensional vector (time-discrete) of information with $K_d$ possible discrete values.
\begin{equation}
	\vec{d} = \left[d_0, d_1, d_2, \cdots, d_{N-1}\right]^{\mathrm{T}}
\end{equation}

However, the modulation is capable of encoding only $K_m$ discrete values. \textbf{So, a mapping of the $K_d$ discrete data states to the $K_m$ modulator symbol states is necessary.} This mapping is called \index{symbol mapping} \textbf{symbol mapping}.

\begin{table}[H]
	\centering
	\caption[Example symbol mapping]{Example symbol mapping: There are $K_d = 2$ discrete data states, but $K_m = 4$ modulator symbol states. Two data point are mapped to one symbol. So one symbol carries two data points.}
	\begin{tabular}{|l|l|}
		\hline
		Data & Symbol \\
		\hline
		\hline
		$\left[0, 0\right]^{\mathrm{T}}$ & 0 \\
		\hline
		$\left[1, 0\right]^{\mathrm{T}}$ & 1 \\
		\hline
		$\left[0, 1\right]^{\mathrm{T}}$ & 2 \\
		\hline
		$\left[1, 1\right]^{\mathrm{T}}$ & 3 \\
		\hline
	\end{tabular}
\end{table}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\node[block,draw](Mapper){Symbol mapping};
		\node[block,draw,right=2cm of Mapper](Mod){Modulation};
		
		\draw[latex-o] (Mapper.west) -- +(-2cm,0) node[left,align=right]{Data};
		\draw[-latex] (Mapper.east) -- node[midway,above,align=left]{Symbols} (Mod.west);
		\draw[-latex] (Mod.east) -- +(2cm,0) node[right,align=left]{\ac{RF}};
	\end{tikzpicture}
	\caption{Abstract transmitter signal chain of symbol mapping and modulation}
\end{figure}

\subsubsection{Data Detection}

On the receiver side, the \emph{symbol mapping} must be reversed. This is accomplished by the \index{data detection} \textbf{data detection}.
\begin{itemize}
	\item The demodulator delivers a series of symbols.
	\item Each symbol is mapped to the data. $K_m$ modulator symbol states are mapped to $K_d$ discrete data states.
	\item The mapping is a kind of quantization of the modulator output.
\end{itemize}

Remember that the received signal is subject to noise (thermal noise, quantization noise, ...).
\begin{itemize}
	\item The modulator output is in fact value-discrete.
	\item Noise is added to the modulator output.
	\item The received symbol may be mapped to a false data value, because the additive noise pushes the signal outside the detection region for the correct data value.
\end{itemize}

\begin{fact}
	Reconstructed data at the receiver side can differ from the true value at the transmitter. This is called \emph{data error}.
\end{fact}

\begin{itemize}
	\item Noise is a stochastic process. Therefore, the data error is random.
	\item The probability for the data error increases as the \ac{SNR} decreases.
	\item A high \ac{SNR} makes data errors unlikely.
	\item Measures for the data error are (which can be defined in relation to the \ac{SNR}) amongst others:
	\begin{itemize}
		\item The \index{bit error rate} \textbf{\acf{BER}}, measuring the proportion of erroneous bits, when the output data is a bit stream.
		\item The \index{packet error rate} \textbf{packet error rate}, measuring the proportion of erroneous packets, where packets are a collection of data processed by higher protocol layers. Higher protocol layers may not be able to process the packet if a number of their data entities are incorrect.
	\end{itemize}
\end{itemize}

\begin{fact}
	The number of modulator symbol states $K_m$ influences the probability for data errors.
\end{fact}

\begin{itemize}
	\item Low numbers of modulator symbol states $K_m$ perform better under noisy conditions with a low \ac{SNR}.
	\item Higher numbers of modulator symbol states $K_m$ are sensitive to noise, because the spacing between the discrete values gets smaller. The performance is bad under noisy conditions with a low \ac{SNR}.
	\item Communication systems may mitigate this problem by adapting the number of modulator symbol states $K_m$ dynamically.
	\begin{itemize}
		\item The link quality is estimated.
		\item If the link quality is good, the modulator is configured to a high $K_m$. The data rate is thereby increased.
		\item When the link quality drops, the modulator is configured to a low $K_m$. The data rate must be decreased for the sake of reliability under noisy conditions.
		\item The adaption requires some additional overhead in the implementation. Usually, higher protocol layers, especially the data link layer (layer 2), is involved, because the $K_m$ value must be announced to the receiver.
	\end{itemize}
\end{itemize}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\node[block,draw](Det){Symbol mapping};
		\node[block,draw,right=2cm of Det](Demod){Demodulation};
		
		\draw[-latex] (Det.west) -- +(-2cm,0) node[left,align=right]{Reconstructed\\ data};
		\draw[latex-] (Det.east) -- node[midway,above,align=left]{Noisy\\ symbols} (Demod.west);
		\draw[latex-o] (Demod.east) -- +(2cm,0) node[right,align=left]{\ac{RF}};
	\end{tikzpicture}
	\caption{Abstract receiver signal chain of demodulation and data detection}
\end{figure}

\subsection{Amplitude-Shift Keying}

The application of the \ac{AM} in digital communication system is the \index{amplitude-shift keying} \acf{ASK}.
\begin{itemize}
	\item The amplitude of a carrier is altered to modulate the data.
	\item Because only the amplitude carries the information, the demodulator can be coherent or non-coherent.
	\item Advantage: Both modulator and demodulator circuits are simple and can be realized at low cost. Therefore, \ac{ASK} is favoured for simple and cost-efficient applications.
	\item Drawback: The amplitude can be strongly affected by disturbances. \ac{ASK} signals are not very immune against noise.
\end{itemize}

The amplitude can take $K_m$ discrete values (symbols). The symbols are mapped to amplitude levels between $\hat{A}_L$ and the maximum amplitude $\hat{A}_H$:
\begin{equation}
	x_{A}(t) = \hat{A}_L + \frac{\hat{A}_H - \hat{A}_L}{K_m - 1} x_{sym}(t)
\end{equation}
where $x_{sym}(t) \in \left\{0, 1, \cdots, K_m - 1\right\}$.

The \ac{ASK} is:
\begin{equation}
	x_{ASK}(t) = x_{A}(t) \underbrace{\cos\left(\omega_{RF} t\right)}_{\text{Carrier}}
\end{equation}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.15\textheight},
			width=0.6\linewidth,
			scale only axis,
			xlabel={$t$},
			ylabel={$x_{ASK}(t)$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=outer north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-0.5,
			xmax=9.5,
			ymin=-1.7,
			ymax=1.7,
			%xtick={0,0.125,...,1},
			%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
			%ytick={0},
		]
			\addplot[red, smooth, domain=0:2, samples=50] plot(\x, {sin(deg(2*pi*2*\x))});
			\addplot[red, smooth, domain=2:4, samples=50] plot(\x, {0.2*sin(deg(2*pi*2*\x))});
			\addplot[red, smooth, domain=4:6, samples=50] plot(\x, {sin(deg(2*pi*2*\x))});
			\addplot[red, smooth, domain=6:8, samples=50] plot(\x, {0.2*sin(deg(2*pi*2*\x))});
			\addplot[red, smooth, domain=8:9, samples=50] plot(\x, {sin(deg(2*pi*2*\x))});
			\addlegendentry{\acs{ASK} Signal $x_{ASK}(t)$};
			\draw[olive, dashed] (axis cs:0,1) -- (axis cs:2,1) -- (axis cs:2,0.2) -- (axis cs:4,0.2) -- (axis cs:4,1) -- (axis cs:6,1) -- (axis cs:6,0.2) -- (axis cs:8,0.2) -- (axis cs:8,1) -- (axis cs:9,1);
			%\addlegendentry{Envelope of $x_B(t)$};
			
			\draw[dashed] (axis cs:2,-1.2) -- (axis cs:2,1.2);
			\draw[dashed] (axis cs:4,-1.2) -- (axis cs:4,1.2);
			\draw[latex-latex] (axis cs:2,1.1) -- node[midway,above,align=center]{Symbol period $T_{sym}$} (axis cs:4,1.1);
			
			\draw (1,-1.5) node{1};
			\draw (3,-1.5) node{0};
			\draw (5,-1.5) node{1};
			\draw (7,-1.5) node{0};
		\end{axis}
	\end{tikzpicture}
	\caption{\acs{ASK} with $K_m = 2$ discrete states (with $\hat{A}_L = 0.2$ and $\hat{A}_H = 1$) capable of encoding 1 bit}
\end{figure}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
		height={0.15\textheight},
		width=0.6\linewidth,
		scale only axis,
		xlabel={$t$},
		ylabel={$x_{ASK}(t)$},
		%grid style={line width=.6pt, color=lightgray},
		%grid=both,
		grid=none,
		legend pos=outer north east,
		axis y line=middle,
		axis x line=middle,
		every axis x label/.style={
			at={(ticklabel* cs:1.05)},
			anchor=north,
		},
		every axis y label/.style={
			at={(ticklabel* cs:1.05)},
			anchor=east,
		},
		xmin=-0.5,
		xmax=9.5,
		ymin=-1.7,
		ymax=1.7,
		%xtick={0,0.125,...,1},
		%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
		%ytick={0},
	]
		\addplot[red, smooth, domain=0:2, samples=50] plot(\x, {sin(deg(2*pi*2*\x))});
		\addplot[red, smooth, domain=2:4, samples=50] plot(\x, {0.2*sin(deg(2*pi*2*\x))});
		\addplot[red, smooth, domain=4:6, samples=50] plot(\x, {0.8*sin(deg(2*pi*2*\x))});
		\addplot[red, smooth, domain=6:8, samples=50] plot(\x, {0.5*sin(deg(2*pi*2*\x))});
		\addplot[red, smooth, domain=8:9, samples=50] plot(\x, {sin(deg(2*pi*2*\x))});
		\addlegendentry{\acs{ASK} Signal $x_{ASK}(t)$};
		\draw[olive, dashed] (axis cs:0,1) -- (axis cs:2,1) -- (axis cs:2,0.2) -- (axis cs:4,0.2) -- (axis cs:4,0.8) -- (axis cs:6,0.8) -- (axis cs:6,0.5) -- (axis cs:8,0.5) -- (axis cs:8,1) -- (axis cs:9,1);
		%\addlegendentry{Envelope of $x_B(t)$};
		
		\draw (1,-1.5) node{3};
		\draw (3,-1.5) node{0};
		\draw (5,-1.5) node{2};
		\draw (7,-1.5) node{1};
	\end{axis}
	\end{tikzpicture}
	\caption{\acs{ASK} with $K_m = 4$ discrete states (with $\hat{A}_L = 0.25$ and $\hat{A}_H = 1$) capable of encoding 2 bits}
\end{figure}

\subsubsection{Phasor Representation}

The above examples depicted different constellations for $K_m$.

The \ac{ASK} is a multiplication of the symbol stream $x_{sym}(t)$ which the mono-chromatic carrier. This causes an amplitude change with each new symbol.

\textbf{An alternate representation is known from Chapter 2 -- the phasors.} Each symbol of the $K_m$ states is assigned a phasor.
\begin{equation}
	\underline{X}_{ASK}(t) = \hat{A}_L + \frac{\hat{A}_H - \hat{A}_L}{K_m - 1} x_{sym}(t)
\end{equation}

\begin{table}[H]
	\centering
	\caption{Example phasor representation of the symbols with $K_m = 4$ discrete states (with $\hat{A}_L = 0.25$ and $\hat{A}_H = 1$)}
	\begin{tabular}{|l|l|}
		\hline
		Symbol & Phasor \\
		\hline
		\hline
		0 & $0.25 \cdot e^{j 0}$ \\
		\hline
		1 & $0.5 \cdot e^{j 0}$ \\
		\hline
		2 & $0.75 \cdot e^{j 0}$ \\
		\hline
		3 & $1 \cdot e^{j 0}$ \\
		\hline
	\end{tabular}
\end{table}

At each transition to a new symbol, the phasor is switched. The new phasor alters the carrier amplitude.

\subsection{Phase-Shift Keying}

The application of the \ac{PM} in digital communication system is the \index{phase-shift keying} \acf{PSK}.
\begin{itemize}
	\item The phase of the carrier is altered to modulate the data.
	\item Non-coherent demodulation will not work. Generally, a coherent demodulator is required.
	\item Advantage: The modulated carrier is more immune to disturbances causing fluctuations of the amplitude.
	\item Drawback: The hardware is more complex than that for \ac{ASK}.
\end{itemize}

\begin{fact}
	\ac{PSK} must be demodulated coherently.
\end{fact}

The general form of a \ac{PSK} is:
\begin{equation}
	x_{PSK}(t) = \sqrt{\frac{2 E_{sym}}{T_{sym}}} \cos\left(\omega_{RF} t + \phi_{sym}(t)\right)
\end{equation}
where
\begin{itemize}
	\item $E_{sym}$ is the energy per symbol,
	\item $T_{sym}$ is the symbol period, and
	\item $\phi_{sym}(t)$ represents the symbol converted to a phase-shift.
\end{itemize}

Each of the $K_m$ symbol represents a phase-shift:
\begin{equation}
	\phi_{sym}(t) = \frac{2\pi}{K_m} x_{sym}(t)
\end{equation}
The discrete phase-shifts are equally distributed.

The phase-shifts can be represented by a phasor:
\begin{equation}
	\underline{X}_{PSK}(t) = \sqrt{\frac{2 E_{sym}}{T_{sym}}} e^{j \phi_{sym}(t)} = \sqrt{\frac{2 E_{sym}}{T_{sym}}} e^{j \frac{2\pi}{K_m} x_{sym}(t)}
\end{equation}

\begin{figure}[H]
	\centering
	
	\subfloat[\acs{PSK} with $K_m = 2$ in the time-domain]{
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.15\textheight},
				width=0.35\linewidth,
				scale only axis,
				xlabel={$t$},
				ylabel={$x_{PSK}(t)$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=outer north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-0.5,
				xmax=9.5,
				ymin=-1.7,
				ymax=1.7,
				%xtick={0,0.125,...,1},
				%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
				%ytick={0},
			]
				\addplot[red, smooth, domain=0:2, samples=50] plot(\x, {cos(deg(2*pi*1*\x)+180)});
				\addplot[red, smooth, domain=2:4, samples=50] plot(\x, {cos(deg(2*pi*1*\x))});
				\addplot[red, smooth, domain=4:6, samples=50] plot(\x, {cos(deg(2*pi*1*\x)+180)});
				\addplot[red, smooth, domain=6:8, samples=50] plot(\x, {cos(deg(2*pi*1*\x))});
				\addplot[red, smooth, domain=8:9, samples=50] plot(\x, {cos(deg(2*pi*1*\x))});
				
				\draw[dashed] (axis cs:2,-1.6) -- (axis cs:2,1.2);
				\draw[dashed] (axis cs:4,-1.6) -- (axis cs:4,1.2);
				\draw[dashed] (axis cs:6,-1.6) -- (axis cs:6,1.2);
				\draw[dashed] (axis cs:8,-1.6) -- (axis cs:8,1.2);
				\draw[latex-latex] (axis cs:4,1.1) -- node[midway,above,align=center]{Symbol period $T_{sym}$} (axis cs:6,1.1);
				
				\draw (1,-1.5) node{1};
				\draw (3,-1.5) node{0};
				\draw (5,-1.5) node{1};
				\draw (7,-1.5) node{0};
			\end{axis}
		\end{tikzpicture}
	}
	\hfill
	\subfloat[Constellation diagram of the \acs{PSK} with $K_m = 2$]{
		\centering
		\begin{tikzpicture}
			\draw[->] (-2.2,0) -- (2.2,0) node[below right, align=left]{$\Re\left\{\underline{X}_{PSK}(t)\right\}$};
			\draw[->] (0,-2.2) -- (0,2.2) node[left, align=right]{$\Im\left\{\underline{X}_{PSK}(t)\right\}$};
			
			\draw[black,thick,fill=gray!60] (0:1) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{0};
			\draw[black,thick,fill=gray!60] (180:1) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{1};
		\end{tikzpicture}
	}

	\caption{\acs{PSK} with $K_m = 2$ discrete states (also known as \ac{BPSK}) capable of encoding 1 bit}
\end{figure}

\begin{figure}[H]
	\centering
	
	\subfloat[\acs{PSK} with $K_m = 4$ in the time-domain]{
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.15\textheight},
				width=0.35\linewidth,
				scale only axis,
				xlabel={$t$},
				ylabel={$x_{PSK}(t)$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=outer north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-0.5,
				xmax=9.5,
				ymin=-1.7,
				ymax=1.7,
				%xtick={0,0.125,...,1},
				%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
				%ytick={0},
			]
				\addplot[red, smooth, domain=0:2, samples=50] plot(\x, {cos(deg(2*pi*1*\x))});
				\addplot[red, smooth, domain=2:4, samples=50] plot(\x, {cos(deg(2*pi*1*\x)+270)});
				\addplot[red, smooth, domain=4:6, samples=50] plot(\x, {cos(deg(2*pi*1*\x)+90)});
				\addplot[red, smooth, domain=6:8, samples=50] plot(\x, {cos(deg(2*pi*1*\x)+180)});
				\addplot[red, smooth, domain=8:9, samples=50] plot(\x, {cos(deg(2*pi*1*\x))});
				
				\draw[dashed] (axis cs:2,-1.6) -- (axis cs:2,1.2);
				\draw[dashed] (axis cs:4,-1.6) -- (axis cs:4,1.2);
				\draw[dashed] (axis cs:6,-1.6) -- (axis cs:6,1.2);
				\draw[dashed] (axis cs:8,-1.6) -- (axis cs:8,1.2);
				\draw[latex-latex] (axis cs:4,1.1) -- node[midway,above,align=center]{Symbol period $T_{sym}$} (axis cs:6,1.1);
				
				\draw (1,-1.5) node{0};
				\draw (3,-1.5) node{3};
				\draw (5,-1.5) node{1};
				\draw (7,-1.5) node{2};
			\end{axis}
		\end{tikzpicture}
	}
	\hfill
	\subfloat[Constellation diagram of the \acs{PSK} with $K_m = 4$]{
		\centering
		\begin{tikzpicture}
			\draw[->] (-2.2,0) -- (2.2,0) node[below right, align=left]{$\Re\left\{\underline{X}_{PSK}(t)\right\}$};
			\draw[->] (0,-2.2) -- (0,2.2) node[left, align=right]{$\Im\left\{\underline{X}_{PSK}(t)\right\}$};
			
			\draw[black,thick,fill=gray!60] (0:1) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{0};
			\draw[black,thick,fill=gray!60] (90:1) ++(-0.2,0) arc(-180:180:0.2) node[left,align=right]{1};
			\draw[black,thick,fill=gray!60] (180:1) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{2};
			\draw[black,thick,fill=gray!60] (270:1) ++(-0.2,0) arc(-180:180:0.2) node[left,align=right]{3};
		\end{tikzpicture}
	}
	
	\caption{\acs{PSK} with $K_m = 4$ discrete states (also known as \ac{QPSK}) capable of encoding 2 bit}
\end{figure}

The two examples above depicted the phasor constellations in the complex plane besides the time-domain function of the \ac{PSK} signal.

\begin{definition}{Constellation diagram}
	The \index{symbol constellation} \textbf{symbol constellation} describes all possible phasor values in the complex plane with a symbol associated to it.
	
	The \index{constellation diagram} \textbf{constellation diagram} depicts the symbol constellation graphically.
\end{definition}

\subsection{Quadrature Amplitude Modulation}

Now, \ac{ASK} and \ac{PSK} techniques are combined.
\begin{itemize}
	\item Both amplitude and phase of the carrier are altered.
	\item Using these two dimensions enlarges the set of symbols. Consequently, more data can be transmitted in one symbol.
	\item The modulation is called \index{quadrature amplitude modulation} \textbf{\acf{QAM}}.
	\item The abbreviation \acs{QAM} is often prefixed like \emph{$K_m$-\acs{QAM}}, where $K_m$ is the number of symbols.
	\begin{itemize}
		\item $2$-\acs{QAM} is equivalent to the \ac{BPSK}. The amplitude is constant.
		\item $4$-\acs{QAM} is equivalent to the \ac{QPSK}. The amplitude is constant.
		\item $16$-\acs{QAM} encodes 4 bits in 16 symbols. Both amplitude and phase are used.
		\item $64$-\acs{QAM} encodes 6 bits in 64 symbols. Both amplitude and phase are used.
		\item $256$-\acs{QAM} encodes 8 bits (1 byte) in 256 symbols. Both amplitude and phase are used.
		\item Any other value of can be selected. However, practical implementations only support powers of 2 because binary data (bits) is encoded.
	\end{itemize}
	\item The symbols are distributed with equal spacing to the neighbouring symbols in the complex plane.
\end{itemize}

\begin{fact}
	Because the phase is affected, coherent demodulation is required.
\end{fact}

\begin{figure}[H]
	\centering
	\begin{adjustbox}{scale=1}
		\begin{tikzpicture}[scale=1]
			\draw[-latex] (-2.9,0) -- (2.9,0) node[below right, align=left]{$\Re\left\{\underline{X}_{QAM}(t)\right\}$};
			\draw[-latex] (0,-2.9) -- (0,2.9) node[left, align=right]{$\Im\left\{\underline{X}_{QAM}(t)\right\}$};
			
			\draw[black,thick,fill=gray!60] (2.25,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{0};
			\draw[black,thick,fill=gray!60] (2.25,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{1};
			\draw[black,thick,fill=gray!60] (0.75,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{2};
			\draw[black,thick,fill=gray!60] (0.75,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{3};
			
			\draw[black,thick,fill=gray!60] (2.25,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{4};
			\draw[black,thick,fill=gray!60] (2.25,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{5};
			\draw[black,thick,fill=gray!60] (0.75,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{6};
			\draw[black,thick,fill=gray!60] (0.75,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{7};
			
			\draw[black,thick,fill=gray!60] (-2.25,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{8};
			\draw[black,thick,fill=gray!60] (-2.25,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{9};
			\draw[black,thick,fill=gray!60] (-0.75,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{10};
			\draw[black,thick,fill=gray!60] (-0.75,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{11};
			
			\draw[black,thick,fill=gray!60] (-2.25,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{12};
			\draw[black,thick,fill=gray!60] (-2.25,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{13};
			\draw[black,thick,fill=gray!60] (-0.75,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{14};
			\draw[black,thick,fill=gray!60] (-0.75,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{15};
		\end{tikzpicture}
	\end{adjustbox}
	\caption{Example constellation diagram of a $16$-\acs{QAM}}
\end{figure}

\begin{excursus}{Modulation of \ac{QAM} signals}
	The IQ modulator (see Figure \ref{fig:ch05:iq_up_circuit}) can be used to modulate the \ac{QAM} symbols.
	\begin{itemize}
		\item The \underline{real part of the symbol} phasor $\Re\left\{\underline{X}_{PSK}(t)\right\}$ is converted to an analogue signal by a \ac{DAC} and \underline{directly used as the \ac{I} baseband signal}.
		\item The \underline{imaginary part of the symbol} phasor $\Im\left\{\underline{X}_{PSK}(t)\right\}$ is converted to an analogue signal by a \ac{DAC} and \underline{directly used as the \ac{Q} baseband signal}.
	\end{itemize}

	\vspace{0.5em}
	
	The IQ demodulation works vice versa.
\end{excursus}

The number $K_m$ of the $K_m$-\acs{QAM} selects the number of possible symbols in the constellation diagram.
\begin{itemize}
	\item A higher value of $K_m$ enlarges the set of symbols.
	\begin{itemize}
		\item More data can be encoded in one symbol.
		\item The data rate increases while the symbol period is kept constant.
		\item The bandwidth of the transmitted signal remains constant while the data rate increases.
	\end{itemize}
	\item As a drawback, higher values of $K_m$ reduce the noise immunity. Signals need a higher \ac{SNR} to keep the data error after the demodulation low.
	\item Lower values of $K_m$
	\begin{itemize}
		\item are more immune to noise,
		\item are capable of dealing with a poor \ac{SNR} better,
		\item but can encode less data in one symbol, and
		\item therefore have a lower data rate.
	\end{itemize}
\end{itemize}

\begin{excursus}{Transmission bandwidth}
	The transmission bandwidth is matters!
	\begin{itemize}
		\item The electromagnetic spectrum is shared with many other applications and services.
		\item \textbf{The electromagnetic spectrum is a sparse resource.} Its use is regulated by laws and norms.
		\item Its important to use it efficiently. Therefore, each symbol should encode as much data as possible to obtain a high data rate at a moderately narrow bandwidth.
		\item A trade-off must be made between
		\begin{itemize}
			\item a reasonable high value of $K_m$ increasing the data rate and
			\item a reasonable low value of $K_m$ increasing the immunity to noise.
		\end{itemize}
		\item Modern digital communication system are capable of adapting the value of $K_m$ to the current propagation conditions to archive optimal results.
	\end{itemize}

	\vspace{1em}
	
	The transmission bandwidth is related symbol rate $f_{sym}$.
	\begin{itemize}
		\item Simple approximations set the symbol rate $f_{sym}$ and transmission equal.
		\item However, the exact transmission bandwidth depends on the selection of filters and the modulation technique.
		\item Spectral considerations of the \ac{AM} (Section \ref{sec:ch05:am}) and \ac{PM} (Section \ref{sec:ch05:pm}) apply to the \ac{QAM}, too.
		\item The \ac{PSD} can be tuned to reduce interference with other users of the electromagnetic spectrum by the selection of the right modulation technique.
	\end{itemize}

	This chapter gave an overview about modulation techniques. There are many variants which are derived from these basic techniques.
\end{excursus}

\subsection{Inter-Symbol Interference}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.15\textheight},
			width=0.7\linewidth,
			scale only axis,
			xlabel={$t$},
			ylabel={$x_{sym}(t)$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=outer north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-0.5,
			xmax=8.5,
			ymin=0,
			ymax=1.7,
			%xtick={0,0.125,...,1},
			%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
			%ytick={0},
		]
			\draw[blue] (axis cs:0,0) -- (axis cs:0,1) -- (axis cs:2,1) -- (axis cs:2,0);
			\draw[red] (axis cs:2,0) -- (axis cs:2,0.55) -- (axis cs:4,0.55) -- (axis cs:4,0);
			\draw[green] (axis cs:4,0) -- (axis cs:4,0.85) -- (axis cs:6,0.85) -- (axis cs:6,0);
			\draw[olive] (axis cs:6,0) -- (axis cs:6,0.7) -- (axis cs:8,0.7) -- (axis cs:8,0);
			
			\draw[dashed] (axis cs:2,0) -- (axis cs:2,1.2);
			\draw[dashed] (axis cs:4,0) -- (axis cs:4,1.2);
			\draw[latex-latex] (axis cs:2,1.1) -- node[midway,above,align=center]{Symbol period $T_{sym}$} (axis cs:4,1.1);
		\end{axis}
	\end{tikzpicture}
	\caption{Series of four ideal symbols}
\end{figure}

\begin{itemize}
	\item \eqref{eq:ch05:sym_rect} defined the symbols as ideal rectangle shapes.
	\item Real implementations this ideal shape does not exist.
	\begin{itemize}
		\item The Fourier transform of the rectangle function is a sinc-function, which indefinitely expands in the frequency domain.
		\item Real system limit the bandwidth. Remember that \acp{LPF} should be applied after mixers and before \ac{ADC}.
	\end{itemize}
	\item Due to the bandwidth-limitation, the rectangle shape is flattened. The ideally steep edges become flattened.
\end{itemize}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.15\textheight},
			width=0.7\linewidth,
			scale only axis,
			xlabel={$t$},
			ylabel={$x_{sym}(t)$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=outer north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-0.5,
			xmax=8.5,
			ymin=0,
			ymax=1.7,
			%xtick={0,0.125,...,1},
			%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
			%ytick={0},
		]
			\draw[blue,smooth] (axis cs:-0.25,0) -- (axis cs:0.25,1) -- (axis cs:1.75,1) -- (axis cs:2.25,0);
			\draw[red,smooth] (axis cs:1.75,0) -- (axis cs:2.25,0.55) -- (axis cs:3.75,0.55) -- (axis cs:4.25,0);
			\draw[green,smooth] (axis cs:3.75,0) -- (axis cs:4.25,0.85) -- (axis cs:5.75,0.85) -- (axis cs:6.25,0);
			\draw[olive,smooth] (axis cs:5.75,0) -- (axis cs:6.25,0.7) -- (axis cs:7.75,0.7) -- (axis cs:8.25,0);
			
			\draw[dashed] (axis cs:2,0) -- (axis cs:2,1.2);
			\draw[dashed] (axis cs:4,0) -- (axis cs:4,1.2);
			\draw[latex-latex] (axis cs:2,1.1) -- node[midway,above,align=center]{Symbol period $T_{sym}$} (axis cs:4,1.1);
		\end{axis}
	\end{tikzpicture}
	\caption[Series of four non-ideal symbols showing overlap]{Series of four non-ideal symbols where the edges are flattened. The symbols overlap due to \acs{ISI}.}
\end{figure}

\begin{itemize}
	\item Due to the flattened shape, the symbols overlap.
	\item This effect is the \index{inter-symbol interference} \textbf{\acf{ISI}}.
	\item To mitigate the \ac{ISI} a \index{guard interval} \textbf{guard interval} should be inserted between the symbols.
	\begin{itemize}
		\item The guard interval adds a spacing between the symbol pulses.
		\item The guard interval reduces the \ac{ISI}.
		\item The symbol period is prolonged. It is the sum of the guard interval and the symbol width (which used to equal the symbol period for ideal rectangle shapes)-
	\end{itemize}
	\item Reducing the symbol width by maintaining the symbol period $T_{sym}$ is not feasible, because the bandwidth of the signal would be increased.
\end{itemize}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.15\textheight},
			width=0.7\linewidth,
			scale only axis,
			xlabel={$t$},
			ylabel={$x_{sym}(t)$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=outer north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-0.5,
			xmax=10,
			ymin=0,
			ymax=1.9,
			%xtick={0,0.125,...,1},
			%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
			%ytick={0},
		]
			\draw[blue,smooth] (axis cs:-0.25,0) -- (axis cs:0.25,1) -- (axis cs:1.75,1) -- (axis cs:2.25,0);
			\draw[red,smooth] (axis cs:2.25,0) -- (axis cs:2.75,0.55) -- (axis cs:4.25,0.55) -- (axis cs:4.75,0);
			\draw[green,smooth] (axis cs:4.75,0) -- (axis cs:5.25,0.85) -- (axis cs:6.75,0.85) -- (axis cs:7.25,0);
			\draw[olive,smooth] (axis cs:7.25,0) -- (axis cs:7.75,0.7) -- (axis cs:9.25,0.7) -- (axis cs:9.75,0);
			
			\draw[dashed] (axis cs:2.5,0) -- (axis cs:2.5,1.6);
			\draw[dashed] (axis cs:4.5,0) -- (axis cs:4.5,1.4);
			\draw[dashed] (axis cs:5,0) -- (axis cs:5,1.6);
			\draw[latex-latex] (axis cs:2.5,1.5) -- node[midway,above,align=center]{Prolonged symbol period $T_{sym}$} (axis cs:5,1.5);
			\draw[latex-latex] (axis cs:2.5,1.3) node[left,align=right]{Symbol width} -- (axis cs:4.5,1.3);
			\draw[latex-latex] (axis cs:4.5,1.3) -- (axis cs:5,1.3) node[right,align=left]{Guard interval};
		\end{axis}
	\end{tikzpicture}
	\caption[Series of four non-ideal symbols with additional spacing]{Series of four non-ideal symbols where the edges are flattened. An additional spacing between the symbols (guard interval) is added to mitigate \acs{ISI}. The symbol period is prolonged by the guard interval.}
\end{figure}

\subsection{IQ Imbalance}

So far, we assumed ideal conditions for the IQ modulation and IQ demodulation (see Figure \ref{fig:ch05:iq_up_circuit} and \ref{fig:ch05:iq_down_circuit}).
\begin{itemize}
	\item The phase-shift of the \ac{LO} signal was perfectly \SI{90}{\degree}.
	\item The phasor of the \ac{LO} signal fed into the \ac{I}-mixer was ideally parallel to the real axis in the complex plane ($\arg\left(\underline{X}_{LO,I}\right) = 0$).
	\item The phasor of the phase-shifted \ac{LO} signal fed into the \ac{Q}-mixer was ideally parallel to the imaginary axis in the complex plane ($\arg\left(\underline{X}_{LO,Q}\right) = \frac{\pi}{2}$).
	\item Both phasors were perfectly orthogonal.
\end{itemize}

\begin{figure}[H]
	\centering
	
	\subfloat[Example constellation diagram of a $16$-\acs{QAM} under ideal conditions]{
		\centering
		\begin{adjustbox}{scale=0.9}
			\begin{tikzpicture}[scale=1]
				\draw[-latex] (-2.9,0) -- (2.9,0) node[below right, align=left]{$\Re\left\{\underline{X}_{QAM}(t)\right\}$};
				\draw[-latex] (0,-2.9) -- (0,2.9) node[left, align=right]{$\Im\left\{\underline{X}_{QAM}(t)\right\}$};
				
				\pgftransformcm{1}{0}{0}{1}{\pgfpoint{0cm}{0cm}}
				
				\foreach \x in {-2.25,-0.75,0.75,2.25}{
					\draw[dashed] (\x,-2.25) -- (\x,2.25);
					\draw[dashed] (-2.25,\x) -- (2.25,\x);
				}
				
				
				\draw[black,thick,fill=gray!60] (2.25,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{0};
				\draw[black,thick,fill=gray!60] (2.25,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{1};
				\draw[black,thick,fill=gray!60] (0.75,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{2};
				\draw[black,thick,fill=gray!60] (0.75,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{3};
				
				\draw[black,thick,fill=gray!60] (2.25,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{4};
				\draw[black,thick,fill=gray!60] (2.25,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{5};
				\draw[black,thick,fill=gray!60] (0.75,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{6};
				\draw[black,thick,fill=gray!60] (0.75,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{7};
				
				\draw[black,thick,fill=gray!60] (-2.25,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{8};
				\draw[black,thick,fill=gray!60] (-2.25,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{9};
				\draw[black,thick,fill=gray!60] (-0.75,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{10};
				\draw[black,thick,fill=gray!60] (-0.75,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{11};
				
				\draw[black,thick,fill=gray!60] (-2.25,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{12};
				\draw[black,thick,fill=gray!60] (-2.25,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{13};
				\draw[black,thick,fill=gray!60] (-0.75,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{14};
				\draw[black,thick,fill=gray!60] (-0.75,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{15};
				
				\draw[-latex,red,thick] (0,0) -- (2.6,0) node[above right, align=left]{$\underline{X}_{LO,I}$};
				\draw[-latex,red,thick] (0,0) -- (0,2.6) node[above right, align=left]{$\underline{X}_{LO,Q}$};
				\draw[red] (0:0.4) arc(0:90:0.4) node[midway,right,align=left]{$\Delta \varphi_{IQ}$};
			\end{tikzpicture}
		\end{adjustbox}
	}
	\hfill
	\subfloat[Example constellation diagram of a $16$-\acs{QAM} subject to IQ imbalance]{
		\centering
		\begin{adjustbox}{scale=0.9}
			\begin{tikzpicture}[scale=1]
				\draw[-latex] (-2.9,0) -- (2.9,0) node[below right, align=left]{$\Re\left\{\tilde{\underline{X}}_{QAM}(t)\right\}$};
				\draw[-latex] (0,-2.9) -- (0,2.9) node[left, align=right]{$\Im\left\{\tilde{\underline{X}}_{QAM}(t)\right\}$};
				
				\pgftransformcm{1}{0.1}{0.1}{1}{\pgfpoint{0cm}{0cm}}
				
				\foreach \x in {-2.25,-0.75,0.75,2.25}{
					\draw[dashed] (\x,-2.25) -- (\x,2.25);
					\draw[dashed] (-2.25,\x) -- (2.25,\x);
				}
				
				
				\draw[black,thick,fill=gray!60] (2.25,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{0};
				\draw[black,thick,fill=gray!60] (2.25,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{1};
				\draw[black,thick,fill=gray!60] (0.75,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{2};
				\draw[black,thick,fill=gray!60] (0.75,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{3};
				
				\draw[black,thick,fill=gray!60] (2.25,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{4};
				\draw[black,thick,fill=gray!60] (2.25,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{5};
				\draw[black,thick,fill=gray!60] (0.75,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{6};
				\draw[black,thick,fill=gray!60] (0.75,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{7};
				
				\draw[black,thick,fill=gray!60] (-2.25,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{8};
				\draw[black,thick,fill=gray!60] (-2.25,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{9};
				\draw[black,thick,fill=gray!60] (-0.75,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{10};
				\draw[black,thick,fill=gray!60] (-0.75,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{11};
				
				\draw[black,thick,fill=gray!60] (-2.25,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{12};
				\draw[black,thick,fill=gray!60] (-2.25,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{13};
				\draw[black,thick,fill=gray!60] (-0.75,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{14};
				\draw[black,thick,fill=gray!60] (-0.75,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{15};
				
				\draw[-latex,red,thick] (0,0) -- (2.6,0) node[above right, align=left]{$\underline{X}_{LO,I}$};
				\draw[-latex,red,thick] (0,0) -- (0,2.6) node[above right, align=left]{$\underline{X}_{LO,Q}$};
				\draw[red] (0:0.4) arc(0:90:0.4) node[midway,right,align=left]{$\Delta \varphi_{IQ}$};
			\end{tikzpicture}
		\end{adjustbox}
	}

	\caption{Example constellation diagram of a $16$-\acs{QAM} under ideal conditions and while being subject to IQ imbalance}
\end{figure}

Under real conditions, the phase-shift of the \ac{LO} signal is not precisely \SI{90}{\degree}.
\begin{itemize}
	\item The phase-shift between the \ac{I} and \ac{Q} component of the \ac{LO} signal $\Delta \varphi_{IQ}$ differs from \SI{90}{\degree}.
	\item The difference $\SI{90}{\degree} - \Delta \varphi_{IQ}$ is the \index{IQ imbalance} \textbf{IQ imbalance}.
	\item The IQ imbalance will disturb the data detection, which reconstructs the symbols from the IQ demodulated \ac{I} and \ac{Q} baseband signals.
	\item Data error might a corollary of the IQ imbalance.
\end{itemize}

Countermeasures:
\begin{itemize}
	\item The IQ imbalance is a linear coordinate transformation.
	\begin{equation}
		\underbrace{\left[\begin{matrix}\Re\left\{\tilde{\underline{X}}_{QAM}(t)\right\}\\ \Im\left\{\tilde{\underline{X}}_{QAM}(t)\right\}\end{matrix}\right]}_{\text{IQ imbalance applied}} = \mat{T}_{IQ} \cdot \underbrace{\left[\begin{matrix}\Re\left\{\underline{X}_{QAM}(t)\right\}\\ \Im\left\{\underline{X}_{QAM}(t)\right\}\end{matrix}\right]}_{\text{Ideal constellation}}
	\end{equation}
	where $\mat{T}_{IQ}$ is a $2 \times 2$ transformation matrix.
	\item The IQ imbalance must be estimated to obtain knowledge about $\mat{T}_{IQ}$.
	\item The IQ imbalance can then be compensated by applying the inverse transformation matrix $\mat{T}_{IQ}^{-1}$.
\end{itemize}

\subsection{Synchronization 2: Carrier Recovery}

\subsubsection{Phase Offset}

Another problem is that the phase of the \ac{RF} signal is not known.
\begin{itemize}
	\item The phases of the transmitter \ac{LO} and the receiver \ac{LO} are not synchronized.
	\item They are phase-shifted by a \emph{phase offset} of $\Delta \varphi_{C}$ (``C'' stands for carrier).
	\item A corollary is that the \ac{RF} carrier, which is synchronous to the transmitter \ac{LO}, is phase-shifted by $\Delta \varphi_{C}$ in relation to the receiver \ac{LO}.
	\item The whole constellation diagram is rotated by $\Delta \varphi_{C}$.
\end{itemize}

\textit{The IQ imbalance is neglected for the following considerations.}

\begin{figure}[H]
	\centering
	\begin{adjustbox}{scale=1}
		\begin{tikzpicture}[scale=1]
			\draw[-latex] (-2.9,0) -- (2.9,0) node[below right, align=left]{$\Re\left\{\underline{X}_{QAM}(t)\right\}$};
			\draw[-latex] (0,-2.9) -- (0,2.9) node[left, align=right]{$\Im\left\{\underline{X}_{QAM}(t)\right\}$};
			
			\begin{scope}[rotate=30]
				\foreach \x in {-2.25,-0.75,0.75,2.25}{
					\draw[dashed] (\x,-2.25) -- (\x,2.25);
					\draw[dashed] (-2.25,\x) -- (2.25,\x);
				}
		
				\draw[black,thick,fill=gray!60] (2.25,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{0};
				\draw[black,thick,fill=gray!60] (2.25,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{1};
				\draw[black,thick,fill=gray!60] (0.75,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{2};
				\draw[black,thick,fill=gray!60] (0.75,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{3};
				
				\draw[black,thick,fill=gray!60] (2.25,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{4};
				\draw[black,thick,fill=gray!60] (2.25,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{5};
				\draw[black,thick,fill=gray!60] (0.75,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{6};
				\draw[black,thick,fill=gray!60] (0.75,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{7};
				
				\draw[black,thick,fill=gray!60] (-2.25,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{8};
				\draw[black,thick,fill=gray!60] (-2.25,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{9};
				\draw[black,thick,fill=gray!60] (-0.75,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{10};
				\draw[black,thick,fill=gray!60] (-0.75,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{11};
				
				\draw[black,thick,fill=gray!60] (-2.25,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{12};
				\draw[black,thick,fill=gray!60] (-2.25,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{13};
				\draw[black,thick,fill=gray!60] (-0.75,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{14};
				\draw[black,thick,fill=gray!60] (-0.75,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{15};
				
				\draw[-latex,red,thick] (0,0) -- (2.6,0) node[above right, align=left]{$\underline{X}_{LO,Tx,I}$};
				\draw[-latex,red,thick] (0,0) -- (0,2.6) node[above right, align=left]{$\underline{X}_{LO,Tx,Q}$};
			\end{scope}
			
			\draw[-latex,green,thick] (0,0) -- (2.6,0) node[above right, align=left]{$\underline{X}_{LO,Rx,I}$};
			\draw[-latex,green,thick] (0,0) -- (0,2.6) node[above right, align=left]{$\underline{X}_{LO,Rx,Q}$};
			
			\draw[blue] (0:0.4) arc(0:30:0.4) node[midway,right,align=left]{$\Delta \varphi_{C}$};
		\end{tikzpicture}
	\end{adjustbox}
	\caption{Example constellation diagram of a $16$-\acs{QAM} rotated by a phase offset of $\Delta \varphi_{C} = \SI{30}{\degree}$}
\end{figure}

\textbf{The data detection will fail, because the detector expects a perfectly adjusted symbol constellation.}

\subsubsection{Frequency Offset}

In addition to the phase offset, the frequency of the transmitter \ac{LO} and receiver \ac{LO} might differ.
\begin{itemize}
	\item The difference is the \emph{frequency offset} $\Delta \omega_{C}$.
	\item The \ac{RF} carrier is synchronized to the transmitter \ac{LO}. Its frequency differs by $\Delta \omega_{C}$ from the receiver \ac{LO}.
	\item A corollary is that the phase offset integrates over time.
	\begin{equation}
		\Delta \varphi_{C}(t) = \underbrace{\Delta \varphi_{C,0}}_{\text{Initial offset}} + \int\limits_{t_0}^{t} \Delta \omega_{C} \, \mathrm{d} t
	\end{equation}
	\item The constellation diagram rotates at $\omega_{C}$ and constantly changes its angle.
\end{itemize}

\begin{figure}[H]
	\centering
	\begin{adjustbox}{scale=1}
		\begin{tikzpicture}[scale=1]
			\draw[-latex] (-2.9,0) -- (2.9,0) node[below right, align=left]{$\Re\left\{\underline{X}_{QAM}(t)\right\}$};
			\draw[-latex] (0,-2.9) -- (0,2.9) node[left, align=right]{$\Im\left\{\underline{X}_{QAM}(t)\right\}$};
			
			\begin{scope}[rotate=30]
				\foreach \x in {-2.25,-0.75,0.75,2.25}{
					\draw[dashed] (\x,-2.25) -- (\x,2.25);
					\draw[dashed] (-2.25,\x) -- (2.25,\x);
				}
				
				\draw[black,thick,fill=gray!60] (2.25,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{0};
				\draw[black,thick,fill=gray!60] (2.25,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{1};
				\draw[black,thick,fill=gray!60] (0.75,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{2};
				\draw[black,thick,fill=gray!60] (0.75,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{3};
				
				\draw[black,thick,fill=gray!60] (2.25,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{4};
				\draw[black,thick,fill=gray!60] (2.25,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{5};
				\draw[black,thick,fill=gray!60] (0.75,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{6};
				\draw[black,thick,fill=gray!60] (0.75,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{7};
				
				\draw[black,thick,fill=gray!60] (-2.25,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{8};
				\draw[black,thick,fill=gray!60] (-2.25,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{9};
				\draw[black,thick,fill=gray!60] (-0.75,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{10};
				\draw[black,thick,fill=gray!60] (-0.75,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{11};
				
				\draw[black,thick,fill=gray!60] (-2.25,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{12};
				\draw[black,thick,fill=gray!60] (-2.25,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{13};
				\draw[black,thick,fill=gray!60] (-0.75,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{14};
				\draw[black,thick,fill=gray!60] (-0.75,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{15};
				
				\draw[-latex,red,thick] (0,0) -- (2.6,0) node[above right, align=left]{$\underline{X}_{LO,Tx,I}$};
				\draw[-latex,red,thick] (0,0) -- (0,2.6) node[above right, align=left]{$\underline{X}_{LO,Tx,Q}$};
				
				\draw[-latex,red,thick] (70:1.2) arc(70:110:1.2) node[left, align=right]{$\Delta \omega_{C}$};
			\end{scope}
			
			\draw[-latex,green,thick] (0,0) -- (2.6,0) node[above right, align=left]{$\underline{X}_{LO,Rx,I}$};
			\draw[-latex,green,thick] (0,0) -- (0,2.6) node[above right, align=left]{$\underline{X}_{LO,Rx,Q}$};
			
			\draw[blue] (0:0.4) arc(0:30:0.4) node[midway,right,align=left]{$\Delta \varphi_{C}$};
		\end{tikzpicture}
	\end{adjustbox}
	\caption{Example constellation diagram of a $16$-\acs{QAM} rotating at a frequency offset of $\Delta \omega_{C}$}
\end{figure}

\textbf{The frequency offset and the rotation symbol constellation makes a data detection impossible.}

\subsubsection{Carrier Recovery}

\begin{fact}
	The receiver \ac{LO} must be synchronized to the \ac{RF} carrier phase and frequency.
\end{fact}

The synchronization is called \index{carrier recovery} \textbf{carrier recovery} and is usually implemented as a closed control loop.
\begin{itemize}
	\item The control loop adjusts the \ac{LO} phase so that it is synchronous to the \ac{RF} carrier ($\Delta \omega_{C} \rightarrow 0$).
	\item A synchronization usually requires data (pilot, preamble) to estimate the phase offset from the current symbol constellation.
	\item The phase offset correction is usually sufficient, because the frequency offset is related to that error via the integral. Because of the frequency offset, the synchronization is only short-term stable and must be repeated regularly.
	\item The estimated phase error is than fed via a loop filter to the \ac{LO} (hybrid approach).
	\item An alternative approach is all-digital: The digital \ac{I} and \ac{Q} signals are digitally mixed to compensate the phase and frequency offset.
\end{itemize}

\textit{Remark:} In contrast to the similar timing recovery, which adjusts the sampling clock, the carrier recovery adjusts the \ac{LO}.

\begin{figure}[H]
	\centering
	\begin{adjustbox}{scale=0.6}
		\begin{circuitikz}
			\node[draw, block] at(0,0) (Mixer){Mixer};
			\node[oscillator, below=4cm of Mixer](LO){};
			\node[draw, block, right=of Mixer](Sampler){Sampler};
			\node[oscillator, below=of Sampler](Clock){};
			\node[draw, block, right=of Clock] (Filter){Loop filter};
			\node[draw, block, right=of Filter] (Pred){Timing error\\ estimator};
			\node[draw, block, right=5cm of LO] (CarrierFilter){Loop filter};
			\node[draw, block, right=of CarrierFilter] (CarrierPred){Phase error\\ estimator};
			
			\draw[dashed] (Sampler.north) -- ++(0, 2cm) node[below left, align=right]{Analogue\\ domain} node[below right, align=left]{Digital\\ domain};
			\node[left=2mm of LO, align=right]{\acs{LO}};
			\node[left=2mm of Clock, align=right]{Sampling\\ clock};
			
			\draw[o->] (-2.5,0) node[left,align=right]{Input} -- (Mixer.west);
			\draw[->] (Mixer.east) -- (Sampler.west);
			\draw[->] (Sampler.east) -- ++(11,0) node[right,align=left]{Further signal\\ processing};
			
			\draw[*->] ([xshift=9cm] Sampler.east) |- (Pred.east);
			\draw[->] (Pred.west) -- (Filter.east);
			\draw[->] (Filter.west) -- (Clock.east);
			
			\draw[*->] ([xshift=9.5cm] Sampler.east) |- (CarrierPred.east);
			\draw[->] (CarrierPred.west) -- (CarrierFilter.east);
			\draw[->] (CarrierFilter.west) -- (LO.east);
			
			\draw[->] (LO.north) -- (Mixer.south);
			\draw[->] (Clock.north) -- (Sampler.south);
		\end{circuitikz}
	\end{adjustbox}
	\caption{Hybrid timing recovery and carrier recovery}
\end{figure}

\begin{figure}[H]
	\centering
	\begin{adjustbox}{scale=0.6}
		\begin{circuitikz}
			\node[draw, block] at(0,0) (Mixer){Mixer};
			\node[oscillator, below=3cm of Mixer](LO){};
			\node[draw, block, right=of Mixer](Sampler){Sampler};
			\node[oscillator, below=of Sampler](Clock){};
			\node[draw, block, right=of Sampler] (DigiMix){Digital\\ mixer};
			\node[oscillator, below=4.5cm of DigiMix](NCO){};
			\node[draw, block, right=of DigiMix] (Resampler){Interpolation\\ and resampling};
			\node[draw, block, below=of Resampler] (Filter){Loop filter};
			\node[draw, block, right=of Filter] (Pred){Timing error\\ estimator};
			\node[draw, block, right=of NCO] (CarrierFilter){Loop filter};
			\node[draw, block, right=of CarrierFilter] (CarrierPred){Phase error\\ estimator};
			
			\draw[dashed] (Sampler.north) -- ++(0, 2cm) node[below left, align=right]{Analogue\\ domain} node[below right, align=left]{Digital\\ domain};
			\node[below=2mm of LO, align=center]{Free-running\\ \acs{LO}};
			\node[below=2mm of Clock, align=center]{Free-running\\ sampling clock};
			\node[left=2mm of NCO, align=right]{Digital\\ oscillator};
			
			\draw[o->] (-2.5,0) node[left,align=right]{Input} -- (Mixer.west);
			\draw[->] (Mixer.east) -- (Sampler.west);
			\draw[->] (Sampler.east) -- (DigiMix.west);
			\draw[->] (DigiMix.east) -- (Resampler.west);
			\draw[->] (Resampler.east) -- ++(6,0) node[right,align=left]{Further signal\\ processing};
			
			\draw[*->] ([xshift=5cm] Resampler.east) |- (Pred.east);
			\draw[->] (Pred.west) -- (Filter.east);
			\draw[->] (Filter.north) -- (Resampler.south);
			
			\draw[*->] ([xshift=5.5cm] Resampler.east) |- (CarrierPred.east);
			\draw[->] (CarrierPred.west) -- (CarrierFilter.east);
			\draw[->] (CarrierFilter.west) -- (NCO.east);
			
			\draw[->] (LO.north) -- (Mixer.south);
			\draw[->] (Clock.north) -- (Sampler.south);
			\draw[->] (NCO.north) -- (DigiMix.south);
		\end{circuitikz}
	\end{adjustbox}
	\caption{Digital timing recovery and carrier recovery}
\end{figure}

\nocite{carlson1986}

\phantomsection
\addcontentsline{toc}{section}{References}
\printbibliography[heading=subbibliography]
\end{refsection}