1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
|
% SPDX-License-Identifier: CC-BY-SA-4.0
%
% Copyright (c) 2020 Philipp Le
%
% Except where otherwise noted, this work is licensed under a
% Creative Commons Attribution-ShareAlike 4.0 License.
%
% Please find the full copy of the licence at:
% https://creativecommons.org/licenses/by-sa/4.0/legalcode
\chapter{Digital Signal Processing and Spread Spectrum}
\begin{refsection}
At this point we have learnt about:
\begin{itemize}
\item Mixing \ac{RF} signals down to the baseband using IQ demodulators. And vice verse, mixing baseband signals up to \ac{RF} using IQ modulators.
\item Digitizing these analogue baseband signals.
\end{itemize}
The digitized baseband signal is now processed digitally.
\begin{itemize}
\item There are no analogue baseband processing hardware components like in a traditional radio.
\item The baseband processing is digital after the \ac{ADC}. The time-discrete and value-discrete baseband is processed by:
\begin{itemize}
\item Software: A \ac{CPU} executes a software processing the digital baseband signal.
\item Digital hardware: Digital hardware components (like \ac{PLD}/\ac{FPGA}, \ac{ASIC}) process the digital baseband in logic gates.
\item Hybrid: A part of signal processing is done in digital hardware. Another part is done in software.
\end{itemize}
\end{itemize}
\textbf{Benefits and drawbacks of digital hardware}:
\begin{itemize}
\item The signal processing is parallel. The logic gates operate parallelly.
\item Large amount of data can be processed (e.g. high- sampling rate).
\item The logic gates are programmed (\ac{PLD}, \ac{FPGA}) or statically configured during manufacturing (\ac{ASIC}). Especially, \acp{ASIC} cannot be reconfigured later. An update is not possible.
\item Digital hardware is suitable of accomplishing the tasks of lower protocol layers, especially layer 1 (physical layer). The hardware design becomes difficult for higher protocol layers, requiring sequential processing.
\end{itemize}
\textbf{Benefits and drawbacks of software}:
\begin{itemize}
\item A software is a set of instructions, sequentially executed by a \ac{CPU}.
\item Some extent of parallelism can be achieved by multitasking and multiprocessing.
\item The lack of parallelism limits the capability of processing large amounts of data.
\item Specialized \acp{DSP} offer instructions to speed up some processing tasks requiring intensive, parallel calculations (vector instructions).
\item Software is flexible. Software can be easily updated. So the program can be adapted to fit new applications.
\item Usually, a software includes higher protocol layers, which tend to require sequential processing.
\end{itemize}
\begin{fact}
Implementing large amounts of the signal processing digitally in software is called \acf{SDR}.
\end{fact}
\textbf{Hybrid technologies:}
\begin{itemize}
\item A good trade-off is to split the signal processing between digital hardware and software.
\item Hardware manufactures may implement general signal processing tasks (filtering, resampling, etc.) in hardware and offer an interface to the software.
\item The signal processing is fast, while the software can be updated and re-configure the hardware if required.
\item Hybrid technologies are not as flexible as \ac{SDR}, require less \ac{CPU} processing power, which makes them cheaper and reduces the power consumption.
\item The digital communication system is flexible and can be easily adapted to meet new requirements and fit new applications, without the need to change the hardware. Hardware changes would require costs for development, production and installation.
\item Software updates can be easily deployed. This significantly reduces the maintenance costs.
\end{itemize}
\begin{fact}
Power consumption is an important property. In many \ac{IOT} applications, the devices must have a battery lifetime of several years. Maintenance tasks (and therefore costs) like changing the battery would make those applications infeasible.
\end{fact}
\section{Digital Systems}
So far, we have learnt about analogue systems:
\begin{itemize}
\item Filters
\item Mixers
\item Samplers
\item Amplifiers
\end{itemize}
All analogue systems can be transferred to the time-discrete domain and be implemented there. The z-transform is used to describe and analyse digital systems.
\begin{figure}[H]
\centering
\begin{tikzpicture}
\node[draw, block] (System) {System\\ $\underline{h}[n]$};
\draw[<-o] (System.west) -- ++(-2cm, 0) node[above, align=center]{Input signal\\ $\underline{x}[n]$};
\draw[->] (System.east) -- ++(2cm, 0) node[above, align=center]{Output signal\\ $\underline{y}[n]$};
\end{tikzpicture}
\caption{A digital system with input and output}
\end{figure}
The \index{transfer function!time-discrete systems} \textbf{transfer function} $\underline{H}(\underline{z})$ of the system is:
\begin{equation}
\underline{H}(\underline{z}) = \frac{\underline{Y}(\underline{z})}{\underline{X}(\underline{z})} = \frac{\mathcal{Z}\left\{\underline{x}[n]\right\}}{\mathcal{Z}\left\{\underline{y}[n]\right\}}
\end{equation}
Its time-domain representation is the \index{impulse response!time-discrete systems} \textbf{impulse response} $\underline{h}[n]$.
\begin{subequations}
\begin{align}
\underline{H}(\underline{z}) &= \mathcal{Z}\left\{\underline{h}[n]\right\} \\
\underline{h}[n] &= \mathcal{Z}^{-1}\left\{\underline{H}(\underline{z})\right\}
\end{align}
\end{subequations}
The impulse response is directly obtained as the system's output when an ideal impulse (Kronecker delta\footnote{The Kronecker delta is the time-discrete variant of the Dirac delta function}) is applied to the system's input.
\begin{equation}
\begin{split}
\underline{y}[n] = \underline{h}[n] &= \underline{h}[n] * \underbrace{\delta[n]}_{= 1 \text{ for } n=0, \; 0 \text{ else}.} \\
\underline{Y}(\underline{z}) = \underline{H}(\underline{z}) &= \underline{H}(\underline{z}) \cdot \underbrace{\mathcal{Z}^{-1}\left\{\delta[n]\right\}}_{=1} \\
\end{split}
\end{equation}
\begin{remark}
The z-transform applies to both value-discrete and value-continuous signals, as long as they are time-discrete. However, in this chapter we are are already in the digital domain, i.e., time-discrete and value-discrete.
\end{remark}
\begin{remark}
While being in the analogue domain, the signals were always assumed to be real-valued in the time-domain. The reason was that they must be able to exists as a physical signal. Now, the time-domain signals may be complex-valued. In the digital domain, the signals are just numbers. Refer to the IQ modulation and modulation of complex baseband signals (Chapter 5) for details.
\end{remark}
\begin{remark}
Digital signals are always band-limited.
\begin{itemize}
\item Please remember that signals can only be processed up to a certain bandwidth with is related to the sampling rate (Shannon-Nyquist sampling theorem, repeating replica of the spectrum).
\item Higher bandwidth baseband signals require a higher sampling rate and more processing power.
\end{itemize}
\end{remark}
\section{Digital Filters}
Like analogue filters, digital filters eliminate undesired bands and only let desired ones pass. There are:
\begin{itemize}
\item \acf{LPF},
\item \acf{HPF},
\item \acf{BPF}, and
\item \acf{BSF}.
\end{itemize}
\begin{remark}
This section considers the general theory of filters. The very interesting topic of the filter design is unfortunately beyond the scope of this lecture. There are dedicate lectures on this topic. In addition, you will find plenty of literature and other resources. For practical application, you will find filter design software\footnote{For example, the ``numpy'' and ``scipy'' Python packages provide nice filter design and analysing tools for both scientific and engineering use. It's free software.}.
\end{remark}
\subsection{Infinite Impulse Response Filters}
Chapter 2 showed the ideal filter shapes in the frequency domain. These shapes can be resembled in digital filters.
However, the filter is implemented in the time-domain.
\begin{figure}[H]
\centering
\begin{circuitikz}
\foreach \x in {0,1,2}{
\draw (4,{-3*\x}) node[adder](AddA\x){};
\draw (1,{-3*\x}) to[twoport,t=$z^{-1}$,>,*-] ++(0,-3);
\draw (1,{-3*\x}) to[amp,l=$\underline{b}_\x$,>,-] (AddA\x.west);
\draw (AddA\x.west) node[inputarrow]{};
}
\draw (6,0) node[adder](AddB0){};
\draw (9,0) to[twoport,t=$z^{-1}$,>,*-] ++(0,-3);
\draw (AddB0.east) -- (9,0);
\foreach \x in {1,2}{
\draw (6,{-3*\x}) node[adder](AddB\x){};
\draw (9,{-3*\x}) to[twoport,t=$z^{-1}$,>,*-] ++(0,-3);
\draw (9,{-3*\x}) to[amp,l=$\underline{a}_\x$,>,-] (AddB\x.east);
\draw (AddB\x.east) node[inputarrow,rotate=180]{};
}
\draw[-latex] (AddA1.north) -- (AddA0.south);
\draw[-latex] (AddA2.north) -- (AddA1.south);
\draw (1,-9) to[amp,l=$\underline{b}_3$] ++(3,0) -| (AddA2.south);
\draw (AddA2.south) node[inputarrow,rotate=90]{};
\draw[-latex] (AddB1.north) -- (AddB0.south);
\draw[-latex] (AddB2.north) -- (AddB1.south);
\draw (9,-9) to[amp,l=$\underline{a}_3$] ++(-3,0) -| (AddB2.south);
\draw (AddB2.south) node[inputarrow,rotate=90]{};
\draw[-latex] (AddA0.east) -- (AddB0.west);
\draw (2.5,-10.5) node[below,align=center]{\textbf{Feed-forward}};
\draw (7.5,-10.5) node[below,align=center]{\textbf{Feed-back}};
\draw[o-] (0,0) node[left, align=right]{Input signal\\ $\underline{x}[n]$} -- (1,0);
\draw[-latex] (9,0) -- (10,0) node[right, align=left]{Output signal\\ $\underline{y}[n]$};
\draw[dashed] (5,-2.4) -- (5,-3.6) -- (0,-3.6) -- node[midway,left,align=right]{Filter tap} (0,-2.4) -- cycle;
\end{circuitikz}
\caption{Block diagram of an example \acs{IIR} filter}
\label{fig:ch06:iir_filt}
\end{figure}%
\nomenclature[Bd]{\begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[twoport,t=$z^{-1}$,>] (2,0);\end{circuitikz}}{Delay element}%
\nomenclature[Ba]{\begin{circuitikz}[baseline={(current bounding box.center)}]\node[adder](){};\end{circuitikz}}{Adder}
Figure \ref{fig:ch06:iir_filt} shows an example filter. The block diagram has following digital components:
\begin{itemize}
\item \begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[twoport,t=$z^{-1}$,>] (2,0);\end{circuitikz} The delay element inserts a delay of one sample. -- It stores one sample. When the next sample is clocked in after the sampling period $T_S$, the delay outputs its memorized value and stores the new input value. Clocking period is the smapling period $T_S$.
\item \begin{circuitikz}[baseline={(current bounding box.center)}]\node[adder](){};\end{circuitikz} The adder adds all its input values. The output is the sum of all inputs.
\item \begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[amp,l=$\underline{c}$,>] (2,0);\end{circuitikz} The input is multiplied by the constant \index{filter coefficient} \textbf{filter coefficient} $\underline{c}$.
\item \begin{circuitikz}[baseline={(current bounding box.center)}]\node[adder](Add){}; \draw ([xshift=-2cm] Add.west) to[amp,l=$\underline{c}$,>] (Add.west);\end{circuitikz} The input is multiplied by the constant filter coefficient $\underline{c}$ and then adds it to another value. This \index{multiply-accumulate instruction} \textbf{multiply-accumulate instruction} is sometimes available on specialized \ac{DSP} to speed up their execution. On all other \acp{CPU}, this instruction must be implemented as a dedicate multiplication and dedicate summation.
\end{itemize}
The basic form of a digital filter depicted in Figure \ref{fig:ch06:iir_filt} is an \index{infinite impulse response filter} \textbf{\acf{IIR} filter}.
\begin{itemize}
\item The \ac{IIR} filter consists of a feed-forward branch and a feed-back branch.
\item Each branch consists of a series of delay elements. The number of delay elements per branch defines the \textbf{filter order}.
\item The line between the delay elements is tapped. The \index{filter tap} \textbf{filter tap} takes the delayed value, multiplies it with a constant and then accumulates it to the output of all other filter taps.
\end{itemize}
The time-domain representation of an \ac{IIR} filter is:
\begin{equation}
\underline{y}[n] = \underbrace{\sum\limits_{i=0}^{P} \underline{b}_i \underline{x}[n-i]}_{\text{Feed-forward branch}} - \underbrace{\sum\limits_{l=1}^{Q} \underline{a}_l \underline{y}[n-l]}_{\text{Feed-back branch}}
\end{equation}
where
\begin{itemize}
\item $P$ is the number of feed-forward filter taps,
\item $Q$ is the number of feed-back filter taps,
\item $\underline{x}[n-i]$ are the time-delayed input samples (from past inputs), and
\item $\underline{y}[n-l]$ are the time-delayed output samples (from past outputs).
\end{itemize}
The equivalent frequency-domain representation is:
\begin{equation}
\underline{H}(\underline{z}) = \frac{\sum\limits_{i=0}^{P} \underline{b}_i \underline{z}^{-i}}{1 + \sum\limits_{l=0}^{Q} \underline{a}_l \underline{z}^{-l}}
\end{equation}
Or informally:
\begin{equation}
\underline{H}(\underline{z}) = \frac{\text{Sum of feed-forward taps}}{1 + \text{Sum of feed-back taps}}
\end{equation}
\begin{remark}
Remember that $\underline{z} = A e^{j \phi}$. $A = 1$ for the \ac{DTFT}. However when analysing digital systems, $A$ can differ from 1. So we need to use the general z-transform.
\end{remark}
\begin{definition}{\ac{IIR} filters}
The feed-back branch re-inserts the output samples, so that they again contribute to new output values. A corollary is that the impulse response (the output when a single Kronecker delta impulse is applied to the input) is indefinitely long in the time-domain. The filters have an \textbf{\acf{IIR}}.
\end{definition}
\subsubsection{Stability of IIR Filters}
When it comes to stability, the feed-back branch is an issue.
\begin{itemize}
\item It creates a loop from the output samples and re-inserts them time-delayed.
\item With a bad selection of filter coefficients $\underline{a}_l$, the output builds up and converges to infinity. The filter is unstable.
\end{itemize}
A stable filter has always a value-limited impulse response (\ac{BIBO} stable).
\textbf{But how can we determine, of filter is \ac{BIBO} stable?}
\begin{itemize}
\item The poles $\underline{z}_{\infty}$ and zeros $\underline{z}_{0}$ need to be obtained from the transfer function $\underline{H}(\underline{z})$.
\item This can be achieved using a polynomial decomposition.
\begin{equation}
\underline{H}(\underline{z}) = \frac{\sum\limits_{i=0}^{P} \underline{b}_i \underline{z}^{-i}}{1 + \sum\limits_{l=0}^{Q} \underline{a}_l \underline{z}^{-l}} = \frac{\left(\underline{z}-\underline{z}_{0,0}\right)\left(\underline{z}-\underline{z}_{0,1}\right)\dots\left(\underline{z}-\underline{z}_{0,Q}\right)}{\left(\underline{z}-\underline{z}_{\infty,0}\right)\left(\underline{z}-\underline{z}_{\infty,1}\right)\dots\left(\underline{z}-\underline{z}_{\infty,P}\right)}
\end{equation}
\item The conditions for \ac{BIBO} stability is that all poles are located \underline{within the unit circle}.
\begin{equation}
\left|\underline{z}_{\infty,l}\right| < 1 \qquad \forall \; 0 \leq l \leq P
\end{equation}
\end{itemize}
\begin{fact}
\acs{IIR} filter must be always checked for stability.
\end{fact}
\todo{examples}
\subsection{Finite Impulse Response Filters}
A digital filter without the feed-back path will not have any problems with stability.
\begin{itemize}
\item Removing the feed-back path from Figure \ref{fig:ch06:iir_filt} reduces the filter transfer function to:
\begin{equation}
\underline{H}(\underline{z}) = \sum\limits_{i=0}^{P} \underline{b}_i \underline{z}^{-i}
\end{equation}
\item The number of feed-back filter taps is $Q = 0$.
\item All poles of the filter are $\underline{z}_{\infty,l} = 0 \quad \forall \; 0 \leq l \leq P$. \textbf{The filter will always be \ac{BIBO} stable.}
\end{itemize}
\begin{figure}[H]
\centering
\begin{circuitikz}
\foreach \x in {1,2,3}{
\draw ({1+(3*\x)},0) node[adder](Add\x){};
\draw ({1+(3*(\x-1))},3) to[twoport,t=$z^{-1}$,>,*-] ++(3,0)
to[amp,l=$\underline{b}_\x$,>,-] (Add\x.north);
\draw (Add\x.north) node[inputarrow,rotate=-90]{};
\draw (Add\x.west) node[inputarrow,rotate=0]{};
}
\draw (Add1.east) to[short] (Add2.west);
\draw (Add2.east) to[short] (Add3.west);
\draw (1,3) to[amp,l=$\underline{b}_0$,>,-] ++(0,-3)
to[short] (Add1.west);
\draw[o-] (0,3) node[left, align=right]{Input signal\\ $\underline{x}[n]$} -- (1,3);
\draw[-latex] (Add3.east) -- ++(1,0) node[right, align=left]{Output signal\\ $\underline{y}[n]$};
\draw[dashed] (4.6,-1) -- (3.4,-1) -- (3.4,4) -- node[midway,above,align=center]{Filter tap} (4.6,4) -- cycle;
\end{circuitikz}
\caption{Block diagram of an example \acs{FIR} filter}
\label{fig:ch06:fir_filt}
\end{figure}
There is another simple explanation for the \ac{BIBO} stability.
\begin{itemize}
\item Only the feed-forward filter taps determine the output signal.
\item When a Kronecker delta pulse is given to the filter input, how will the output (impulse response) look like?
\item The impulse response will consist of $P$ time-delayed replica of the Kronecker delta pulse scaled by the filter coefficients.
\item The impulse response can be directly derived from the filter coefficients.
\begin{equation}
\begin{split}
\underline{y}[n] &= \underline{h}[n] * \delta[n] \\
&= \sum\limits_{l=0}^{P} \underline{h}[l] \delta[n - l] \\
&= \underline{h}[n] \\
\underline{h}[n] &= \begin{cases}
\underline{b}_n &\quad \text{if } 0 \leq n \leq P, \\
0 &\quad \text{else}.
\end{cases}
\end{split}
\label{eq:ch06:fir_ir}
\end{equation}
\item The impulse response has a finite length in the time-domain.
\end{itemize}
This leads to the definition of \ac{FIR} filters:
\begin{definition}{\ac{FIR} filters}
Digital filters without a feed-back branch will always have a finite-length impulse response. They are called \index{finite impulse response filter} \textbf{\acf{FIR} filters}. \ac{FIR} filters are always \ac{BIBO} stable.
\end{definition}
As a drawback, \ac{FIR} filters require higher orders than an equivalent \ac{IIR} filter. This increases the complexity of its implementation.
\begin{example}{Gliding average filter}
The formula of the average of a series of $N$ values is:
\begin{equation}
\overline{x} = \frac{1}{N} \sum\limits_{i=1}^{N} x_i
\end{equation}
This averaging can be implemented as a \ac{FIR} filter with $P = N$ filter taps. Each filter coefficient is:
\begin{equation}
b_i = \begin{cases}
\frac{1}{N} &\quad \text{if } 0 \leq i \leq N, \\
0 &\quad \text{else}.
\end{cases}
\end{equation}
The impulse response can be derived from the filter coefficients using \eqref{eq:ch06:fir_ir}.
The output of the filter is
\begin{equation}
\begin{split}
y[n] &= h[n] * x[n] \\
&= \sum\limits_{l=0}^{P} h[l] x[n - l] \\
&= \frac{1}{N} \sum\limits_{l=0}^{P} x[n - l] \\
&\qquad \text{with } P = N \\
&= \frac{1}{N} \sum\limits_{l=0}^{N} x[n - l]
\end{split}
\end{equation}
where $x[n]$ is the \ac{FIR} filter input. The formula resembles the average of $x[n]$ considering the $N$ most recent samples -- the gliding average.
\vspace{0.5em}
\textbf{The gliding average filter belongs to the class of \ac{LPF}.}
\end{example}
\subsubsection{Causality of IIR and FIR Filters}
Both \ac{IIR} and \ac{FIR} are causal. Their impulse response is $\underline{h}[n] = 0 \quad \forall \; n < 0$.
\section{Digital Mixer}
A digital mixer implements a frequency shift in the digital domain. It has the same purpose as the analogue mixer. However, there are some differences:
\begin{itemize}
\item There are usually an \ac{I} and \ac{Q} component in the digital domain. \textbf{The digital signal is complex-valued.}
\item The signal can be frequency-shifted as a whole, because both input and output are complex-valued.
\end{itemize}
\begin{remark}
A signal is practically never mixed to exactly \SI{0}{Hz}. All ADC have a DC bias. The sampled signal is superimposed by a DC voltage at \SI{0}{Hz} in the time-domain. This adds an error. Therefore, the signal shifted some \si{kHz} away from DC. It can be digitally shifted to \SI{0}{Hz}, without adding any errors.
\end{remark}
In the frequency-domain\footnote{The \ac{DTFT} is used because of the time-discrete signals.}, the frequency shift by $\omega_0$ is:
\begin{equation}
\underline{Y}_{\frac{2\pi}{T_S}}\left(e^{j \omega T_S}\right) = \underline{X}_{\frac{2\pi}{T_S}}\left(e^{j\left(\omega - \omega_0\right)T_S}\right)
\end{equation}
The input signal $\underline{X}_{\frac{2\pi}{T_S}}\left(e^{j \omega T_S}\right)$ is shifted as a whole block. $\underline{Y}_{\frac{2\pi}{T_S}}\left(e^{j \omega T_S}\right)$ is the mixer output signal.
In the time-domain, the frequency shift is:
\begin{equation}
\begin{split}
\underline{y}[n] &= \mathcal{F}_{\mathrm{DTFT}}^{-1}\left\{\underline{X}_{\frac{2\pi}{T_S}}\left(e^{j\left(\omega - \omega_0\right)T_S}\right)\right\} \\
&= \underbrace{\underline{x}[n]}_{\text{Mixer input}} \cdot \underbrace{e^{j \omega_c T_S n}}_{\text{\acs{LO} signal}} \\
&= \left(\Re\left\{\underline{x}[n]\right\} + j \cdot \Im\left\{\underline{x}[n]\right\}\right) \left(\cos\left(\omega_c T_S n\right) + j \cdot \sin\left(\omega_c T_S n\right)\right) \\
&= \left( \Re\left\{\underline{x}[n]\right\} \cdot \cos\left(\omega_c T_S n\right) - \Im\left\{\underline{x}[n]\right\} \cdot \sin\left(\omega_c T_S n\right) \right) \\ &\quad + j \left( \Im\left\{\underline{x}[n]\right\} \cdot \cos\left(\omega_c T_S n\right) + \Re\left\{\underline{x}[n]\right\} \cdot \sin\left(\omega_c T_S n\right) \right)
\end{split}
\label{eq:ch06:digi_mix}
\end{equation}
Note the following:
\begin{itemize}
\item The mixer input is complex-valued in the time-domain.
\item The \ac{LO} signal is complex-valued in the time-domain.
\item The mixer output is complex-valued in the time-domain.
\end{itemize}
The \ac{LO} generates both a cos-signal and a \SI{90}{\degree}-phase-shifted sin-signal. The mixer signal is time-discrete. The digital oscillator is a \index{numerically-controlled oscillator} \textbf{\acf{NCO}} which emits the \ac{LO} real and imaginary values at the sample period $T_S$. The frequency can be configured.
\begin{figure}[H]
\centering
\begin{adjustbox}{scale=0.8}
\begin{tikzpicture}
\node[mixer](MixIcos) {};
\node[mixer](MixIsin) at([shift={(3cm, -1cm)}]MixIcos) {};
\node[mixer](MixQcos) at([shift={(0cm, -2cm)}]MixIcos) {};
\node[mixer](MixQsin) at([shift={(3cm, -3cm)}]MixIcos) {};
\node[adder](AddI) at([shift={(7cm, 0cm)}]MixIcos) {};
\node[adder](AddQ) at([shift={(6cm, 0cm)}]MixQcos) {};
\node[block,draw,minimum width=4cm](NCO) at([shift={(0cm, -6cm)}]MixIcos) {\acs{NCO}};
\draw ([xshift=-1.5cm]NCO.north) node[above left,align=right]{$\cos\left(\omega_c T_S n\right)$} -- ([shift={(-1.5cm, -1cm)}]MixIcos.south) -- ([shift={(0.147cm, 0.147cm)}]MixIcos.south west) node[inputarrow,rotate=45]{};
\draw ([shift={(-1.5cm, -1cm)}]MixQcos.south) to[short,*-] ([shift={(0.147cm, 0.147cm)}]MixQcos.south west) node[inputarrow,rotate=45]{};
\draw ([xshift=1.5cm]NCO.north) node[above right,align=left]{$\sin\left(\omega_c T_S n\right)$} -- ([shift={(-1.5cm, -1cm)}]MixIsin.south) -- ([shift={(0.147cm, 0.147cm)}]MixIsin.south west) node[inputarrow,rotate=45]{};
\draw ([shift={(-1.5cm, -1cm)}]MixQsin.south) to[short,*-] ([shift={(0.147cm, 0.147cm)}]MixQsin.south west) node[inputarrow,rotate=45]{};
\draw ([shift={(-3cm, 0cm)}]MixIcos.west) node[left,align=right]{Input \ac{I} $\Re\left\{\underline{x}[n]\right\}$\\ (real part)} to[short,o-] (MixIcos.west) node[inputarrow]{};
\draw ([shift={(-3cm, 0cm)}]MixQcos.west) node[left,align=right]{Input \ac{Q} $\Im\left\{\underline{x}[n]\right\}$\\ (imaginary part)} to[short,o-] (MixQcos.west) node[inputarrow]{};
\draw ([shift={(-2cm, 0cm)}]MixIcos.west) to[short,*-] ++(0cm,-0.5cm) |- (MixIsin.west) node[inputarrow]{};
\draw ([shift={(-2cm, 0cm)}]MixQcos.west) to[short,*-] ++(0cm,-0.5cm) |- (MixQsin.west) node[inputarrow]{};
\draw (MixIcos.east) to[short] (AddI.west) node[inputarrow]{};
\draw (MixQcos.east) to[short] (AddQ.west) node[inputarrow]{};
\draw (MixQsin.east) to[amp,>,l_=$-1$] ++(2cm,0) -| (AddI.south) node[inputarrow,rotate=90]{};
\draw (MixIsin.east) to[short] ++(1cm,0) -| (AddQ.north) node[inputarrow,rotate=-90]{};
\draw (AddI.east) to[short] ++(1cm,0) node[inputarrow]{} node[right,align=left,xshift=5mm]{Output \ac{I} $\Re\left\{\underline{y}[n]\right\}$\\ (real part)};
\draw (AddQ.east) to[short] ++(2cm,0) node[inputarrow]{} node[right,align=left,xshift=5mm]{Output \ac{Q} $\Im\left\{\underline{y}[n]\right\}$\\ (real part)};
\end{tikzpicture}
\end{adjustbox}
\caption[Block diagram of a digital mixer]{Block diagram of a digital mixer, implementing \eqref{eq:ch06:digi_mix}}
\end{figure}
\begin{figure}[H]
\centering
\subfloat[Mixer input $\underline{X}_{\frac{2\pi}{T_S}}\left(e^{j \omega T_S}\right)$] {
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.10\textheight},
width=0.9\linewidth,
scale only axis,
xlabel={$\omega$},
ylabel={$|\underline{X}_{\frac{2\pi}{T_S}}\left(e^{j \omega T_S}\right)|$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=-2.5,
xmax=2.8,
ymin=0,
ymax=1.2,
xtick={-2, -1, -0.5, 0, 0.5, 1, 2},
xticklabels={$-2 \omega_S$, $- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$, $2 \omega_S$},
ytick={0},
]
\draw[dashed] (axis cs:-0.5,0) -- (axis cs:-0.5,1) -- (axis cs:0.5,1) --(axis cs:0.5,0);
\draw[green, thick] (axis cs:{0-0.2},0) -- (axis cs:0,0.7);
\draw[red, thick] (axis cs:0,0.7) -- (axis cs:{0+0.4},0);
\pgfplotsinvokeforeach{-2, -1, 1, 2}{
\draw[green, thick, dashed] (axis cs:{#1-0.2},0) -- (axis cs:#1,0.7);
\draw[red, thick, dashed] (axis cs:#1,0.7) -- (axis cs:{#1+0.4},0);
}
\end{axis}
\end{tikzpicture}
}
\subfloat[Mixer output $\underline{Y}_{\frac{2\pi}{T_S}}\left(e^{j \omega T_S}\right)$] {
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.13\textheight},
width=0.9\linewidth,
scale only axis,
xlabel={$\omega$},
ylabel={$|\underline{Y}_{\frac{2\pi}{T_S}}\left(e^{j \omega T_S}\right)|$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=-2.5,
xmax=2.8,
ymin=-0.4,
ymax=1.2,
xtick={-2, -1, -0.5, 0, 0.5, 1, 2},
xticklabels={$-2 \omega_S$, $- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$, $2 \omega_S$},
ytick={0},
]
\draw[dashed] (axis cs:-0.5,0) -- (axis cs:-0.5,1) -- (axis cs:0.5,1) --(axis cs:0.5,0);
\draw[latex-latex] (axis cs:0,-0.1) -- node[midway,below,align=center]{$\omega_0$} (axis cs:0.25,-0.1);
\draw[dotted] (axis cs:0.25,-0.2) -- (axis cs:0.25,0.8);
\draw[green, thick, dashed] (axis cs:{-0.75-0.2},0) -- (axis cs:-0.75,0.7);
\draw[red, thick, dashed] (axis cs:-0.75,0.7) -- (axis cs:{-0.75+0.25},0.262);
\draw[red, thick] (axis cs:{-0.75+0.25},0.262) -- (axis cs:{-0.75+0.4},0);
\draw[green, thick] (axis cs:{0.25-0.2},0) -- (axis cs:0.25,0.7);
\draw[red, thick] (axis cs:0.25,0.7) -- (axis cs:{0.25+0.25},0.262);
\draw[red, thick, dashed] (axis cs:{0.25+0.25},0.262) -- (axis cs:{0.25+0.4},0);
\pgfplotsinvokeforeach{-1.75, 1.25, 2.25}{
\draw[green, thick, dashed] (axis cs:{#1-0.2},0) -- (axis cs:#1,0.7);
\draw[red, thick, dashed] (axis cs:#1,0.7) -- (axis cs:{#1+0.4},0);
}
\end{axis}
\end{tikzpicture}
}
\caption[Digital mixing in the frequency-domain]{Digital mixing in the frequency-domain. It must be noted that the spectra of sampled signals are periodic. But only the interval between $[- \frac{\omega_S}{2}, \frac{\omega_S}{2}]$ is visible. Therefore, it might appear that frequencies are moved from one end of the interval to the other end.}
\end{figure}
\section{Resampling}
\index{resampling} \textbf{Resampling} refers to the change of the sampling rate in a \index{multi-rate system} \textbf{multi-rate system}.
\begin{figure}[H]
\centering
\begin{tikzpicture}
\node[block,draw,align=center](High){High sampling rate};
\node[block,draw,align=center,right=3cm of High](Low){Low sampling rate};
\draw[-latex] ([xshift=5mm] High.north east) -- node[midway,above,align=center]{Down-sampling\\ (Decimation)} ([xshift=-5mm] Low.north west);
\draw[-latex] ([xshift=-5mm] Low.south west) -- node[midway,below,align=center]{Up-sampling\\ (Interpolation)} ([xshift=5mm] High.south east);
\end{tikzpicture}
\caption{Relation between down-sampling (decimation) and up-sampling (interpolation).}
\end{figure}
\begin{figure}[H]
\centering
\begin{circuitikz}
\node[block,draw,minimum height=3cm](Data){Data\\ Processing};
\draw ([shift={(-4cm,1cm)}] Data.west) node[left,align=right]{Input} to[adc,>,o-] ++(2cm,0) to[twoport,t=$\downarrow N$,>] ([yshift=1cm] Data.west) node[inputarrow]{};
\draw ([yshift=-1cm] Data.west) to[twoport,t=$\uparrow M$,>] ++(-2cm,0) to[dac,>] ++(-2cm,0) node[inputarrow,rotate=180]{} node[left,align=right]{Output};
\end{circuitikz}
\caption{A muli-rate system with a down-sampler (decimation factor $N$) and up-sampler (interpolation factor $M$)}
\end{figure}%
\nomenclature[Bd]{\begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[twoport,t=$\downarrow N$,>] (2,0);\end{circuitikz}}{Down-sampler (decimation factor $N$)}%
\nomenclature[Bu]{\begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[twoport,t=$\uparrow M$,>] (2,0);\end{circuitikz}}{Up-sampler (interpolation factor $M$)}%
\textbf{Why resampling?}
\begin{itemize}
\item Signals at lower sampling rates require less computation time and memory (software), or lower hardware complexity (less logic gates). The power consumption is reduced.
\item The \ac{ADC} can be operated at maximum sampling rate. The signal is oversampled. Down-sampling provides processing gain and enhances the receiver performance.
\end{itemize}
\subsection{Down-sampling}
\begin{definition}{Down-sampling}
\index{down-sampling} \textbf{Down-sampling} is the process of reducing the sampling rate.
\begin{figure}[H]
\centering
\begin{circuitikz}
\draw (0,0) node[left,align=right]{Input $\underline{x}_i[n]$\\ Sample rate: $T_{S,i}$} to[lowpass,>,o-] ++(2,0) to[twoport,t=$\downarrow N$,>] ++(2,0) node[inputarrow,rotate=0]{} node[right,align=left]{Output $\underline{x}_o[n]$\\ Sample rate: $T_{S,o}$};
\end{circuitikz}
\caption{A down-sampler with a decimation factor of $N$}
\end{figure}
The ratio between input and output sampling rate is the \index{decimation factor} \textbf{decimation factor} $N$.
\begin{equation}
N = \frac{T_{S,i}}{T_{S,o}} \qquad, N \in \mathbb{N}
\end{equation}
The decimation factor $N$ must be a positive integer.
\vspace{0.5em}
\index{decimation} \textbf{Decimation} can be used synonymous for down-sampling.
\end{definition}
Down-sampling is in fact the sampling of an already sampled time-discrete signal with a lower sampling rate. The term \emph{resampling} is derived from this.
\begin{itemize}
\item Prior to down-sampling, an \index{anti-aliasing filter} \textbf{anti-aliasing filter} is required.
\item The actual down-sampling is:
\begin{itemize}
\item Take every $n$-th sample out of the input signal.
\item Discard all samples in between.
\end{itemize}
\end{itemize}
\begin{figure}[H]
\centering
\subfloat[Input signal]{
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.15\textheight},
width=0.35\linewidth,
scale only axis,
xlabel={$n$},
ylabel={$x_i[n]$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=0,
xmax=16.8,
ymin=-1.2,
ymax=1.2,
xtick={0,4,...,16},
ytick={0},
]
\pgfplotsinvokeforeach{0,0.125,...,2}{
\addplot[red, thick] coordinates {({#1*8},0) ({#1*8}, {cos(deg(2*pi*1*#1))})};
\addplot[red, only marks, mark=o] coordinates {({#1*8}, {cos(deg(2*pi*1*#1))})};
}
\end{axis}
\end{tikzpicture}
}
\hfill
\subfloat[Decimated output signal]{
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.15\textheight},
width=0.35\linewidth,
scale only axis,
xlabel={$n$},
ylabel={$x_o[n]$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=0,
xmax=4.2,
ymin=-1.2,
ymax=1.2,
xtick={0,1,...,4},
ytick={0},
]
\pgfplotsinvokeforeach{0,0.5,...,2}{
\addplot[red, thick] coordinates {({#1*2},0) ({#1*2}, {cos(deg(2*pi*1*#1))})};
\addplot[red, only marks, mark=o] coordinates {({#1*2}, {cos(deg(2*pi*1*#1))})};
}
\end{axis}
\end{tikzpicture}
}
\caption{Down-sampling by $N = 4$}
\end{figure}
\subsubsection{Aliasing in Down-Sampling}
Down-sampling means that a time-discrete signal is sampled again with a lower sampling rate.
This has effects on the spectrum of the output signal:
\begin{itemize}
\item The spectrum of the input signal is band-limited by $\omega_i \in [-\frac{\pi}{T_{S,i}}, \frac{\pi}{T_{S,i}}]$.
\item The spectrum of the input signal repeats at $\frac{2\pi}{T_{S,i}}$.
\item The spectrum of the output signal is band-limited by $\omega_o \in [-\frac{\pi}{T_{S,o}}, \frac{\pi}{T_{So}}] = [-\frac{\pi}{N T_{S,i}}, \frac{\pi}{N T_{S,i}}]$.
\item The spectrum of the output signal repeats at $\frac{2\pi}{T_{S,o}} = \frac{2\pi}{N T_{S,i}}$.
\item The ``repetition frequency'' of the output signal spectrum is divided by $N$.
\end{itemize}
\begin{fact}
The \index{Shannon-Nyquist sampling theorem} \emph{Shannon-Nyquist sampling theorem} applies to the down-sampling, too. The input signal must be band-limited to $[-\frac{\pi}{T_{S,o}}, \frac{\pi}{T_{So}}]$. Otherwise, the output signal will show \index{aliasing} \emph{aliasing}.
\end{fact}
Therefore, a low-pass filter is applied as an \emph{anti-aliasing filter}. The anti-aliasing filter is implemented as an \ac{IIR} or \ac{FIR} filter.
\begin{figure}[H]
\centering
\subfloat[Spectrum of the input signal] {
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.15\textheight},
width=0.9\linewidth,
scale only axis,
xlabel={$\omega$},
ylabel={$|\underline{X}_i\left(j\omega\right)|$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=-2.5,
xmax=2.5,
ymin=0,
ymax=1.2,
xtick={-2, -1, -0.5, 0, 0.5, 1, 2},
xticklabels={$-2 \omega_{S,i}$, $- \omega_{S,i}$, $- \frac{\omega_{S,i}}{2}$, $0$, $\frac{\omega_{S,i}}{2}$, $\omega_{S,i}$, $2 \omega_{S,i}$},
ytick={0},
]
\draw[latex-latex] (axis cs:0,0.8) -- node[midway,above,align=center]{$\omega_{S,i}$-periodic} (axis cs:1,0.8);
\pgfplotsinvokeforeach{-2, -1, ..., 2}{
\draw[green, thick] (axis cs:{#1-0.25},0) -- (axis cs:#1,0.7);
\draw[red, thick] (axis cs:#1,0.7) -- (axis cs:{#1+0.25},0);
}
\end{axis}
\end{tikzpicture}
}
\subfloat[Spectrum of the decimated output signal (decimation by 2)] {
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.15\textheight},
width=0.9\linewidth,
scale only axis,
xlabel={$\omega$},
ylabel={$|\underline{X}_o\left(j\omega\right)|$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=-2.5,
xmax=2.5,
ymin=0,
ymax=1.2,
xtick={-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2},
xticklabels={$-4 \omega_{S,o}$, $-3 \omega_{S,o}$, $-2 \omega_{S,o}$, $- \omega_{S,o}$, $0$, $\omega_{S,o}$, $2 \omega_{S,o}$, $3 \omega_{S,o}$, $4 \omega_{S,o}$},
ytick={0},
]
\draw[latex-latex] (axis cs:0.5,0.8) -- node[midway,above,align=center]{$\omega_{S,o}$-periodic\\ (i.e. $\omega_{S,i}/N$-periodic)} (axis cs:1,0.8);
\pgfplotsinvokeforeach{-2, -1.5, ..., 2}{
\draw[green, thick] (axis cs:{#1-0.25},0) -- (axis cs:#1,0.7);
\draw[red, thick] (axis cs:#1,0.7) -- (axis cs:{#1+0.25},0);
}
\end{axis}
\end{tikzpicture}
}
\caption[Effects of the down-sampling on the spectrum]{Effects of the down-sampling on the spectrum. If the input signal occupied a little more bandwidth and thereby violated the Shannon-Nyquist sampling theorem, the output signal would show aliasing.}
\end{figure}
\begin{fact}
Changing the sampling rate changes to periodicity of the spectrum of the sampled signal.
\end{fact}
\subsubsection{Processing Gain}
Digitizing an analogue signal and then down-sampling it seems pointless. Why is the \ac{ADC} not configured to the desired sampling rate?
An advantage of the down-sampling is its \index{processing gain!down-sampling} \textbf{processing gain}.
Let's consider a signal with the power $P_i$ (linear scale, \si{mW}) or $L_{P,i}$ (logarithmic scale, \si{dBm}), respectively. The signal sampled and quantized with $B$ bits. The \ac{SQNR} is:
\begin{equation}
L_{\mathrm{SQNR},i} = \SI{1.761}{dB} + B \cdot \SI{6.02}{dB}
\end{equation}
The quantization noise power is in the logarithmic scale (\si{dBm}):
\begin{equation}
L_{P,N,i} = L_{P,i} - L_{\mathrm{SQNR},i}
\end{equation}
or in the linear scale (\si{mW}):
\begin{equation}
\begin{split}
P_{N,i} &= \frac{P_i}{\mathrm{SQNR}_i} \\
&= P_i \cdot 10^{\frac{\SI{1.761}{dB} + B \cdot \SI{6.02}{dB}}{\SI{10}{dB}}}
\end{split}
\end{equation}
The quantization noise power is distributed equally over the frequency axis between $[-\frac{1}{2 T_{S,i}}, \frac{1}{2 T_{S,i}}]$, which is the band limit for the sampled input signal. The \index{noise bandwidth} \textbf{noise bandwidth} is therefore $\Delta f_{S,i} = \frac{1}{T_{S,i}}$. The quantization noise floor $S_{N,i}$, which is a \ac{PSD} (\si{mW/Hz}), is:
\begin{equation}
\begin{split}
S_{N,i} = \frac{P_{N,i}}{\Delta f_{S,i}} \\
&= \frac{P_{N,i}}{\frac{1}{T_{S,i}}} \\
&= P_{N,i} T_{S,i}
\end{split}
\end{equation}
\begin{attention}
Please note the difference between noise power and noise floor (frequency distribution of the power).
\end{attention}
\begin{itemize}
\item The quantization noise floor depends only on the number of bits of the quantizer $B$.
\item Prior to the down-sampling, a low-pass filter is applied.
\item The noise bandwidth is reduced to the filter bandwidth $\Delta f_{S,o} = \frac{1}{T_{S,o}} = \frac{1}{N T_{S,i}}$, which is determined by the Shannon-Nyquist sampling theorem.
\end{itemize}
The quantization noise floor remains constant while the noise bandwidth is divided by $N$. That is, the quantization noise floor in the down-sampler input equals the quantization noise floor in the down-sampler output.
\begin{equation}
S_{N,o} = S_{N,i}
\end{equation}
The noise power in the output will be:
\begin{equation}
\begin{split}
P_{N,o} &= S_{N,o} \cdot \Delta f_{S,o} \\
&= S_{N,i} \cdot \frac{1}{T_{S,o}} \\
&= P_{N,i} T_{S,i} \cdot \frac{1}{N T_{S,i}} \\
&= \frac{P_{N,i}}{N}
\end{split}
\end{equation}
In the logarithmic scale:
\begin{equation}
L_{P,N,o} = L_{P,N,i} - \SI{10}{dB} \cdot \log_{10} \left(N\right)
\end{equation}
\begin{fact}
The down-sampling (decimation) divides the quantization noise power by $N$.
\end{fact}
Now, the \ac{SNR} of the output signal is:
\begin{equation}
\begin{split}
\mathrm{SNR}_o &= \frac{P_i}{P_{N,o}}
\end{split}
\end{equation}
The power of the input signal $P_i$ is not affected and remains the same.
In the logarithmic scale:
\begin{equation}
\begin{split}
L_{\mathrm{SNR},o} &= L_{P,i} - L_{P,N,o} \\
&= \underbrace{L_{P,i} - L_{P,N,i}}_{= L_{\mathrm{SQNR},i}} + \SI{10}{dB} \cdot \log_{10} \left(N\right) \\
&= L_{\mathrm{SQNR},i} + \SI{10}{dB} \cdot \log_{10} \left(N\right)
\end{split}
\end{equation}
\begin{definition}{Processing gain of down-sampling}
The \emph{down-sampling} by $N$ (or \emph{decimation} by $N$) reduces the quantization noise power by factor $N$. The \ac{SNR} is improved (increased) by factor $N$.
\vspace{0.5em}
In measures of decibel, the \ac{SNR} is improved by $+ \SI{10}{dB} \cdot \log_{10} \left(N\right)$.
\vspace{0.5em}
The \ac{SNR} improvement is achieved in the digital signal processing. It is therefore called \index{processing gain} \textbf{processing gain}.
\end{definition}
Increasing the \ac{SNR} is equivalent with increasing the number of bits:
\begin{equation}
\begin{split}
L_{\mathrm{SNR},o} &= \SI{1.761}{dB} + \tilde{B} \cdot \SI{6.02}{dB} \\
\tilde{B} &= \frac{L_{\mathrm{SNR},o} - \SI{1.761}{dB}}{\SI{6.02}{dB}} \\
\tilde{B} &= \frac{L_{\mathrm{SQNR},i} + \SI{10}{dB} \cdot \log_{10} \left(N\right) - \SI{1.761}{dB}}{\SI{6.02}{dB}} \\
\tilde{B} &= \frac{\SI{1.761}{dB} + B \cdot \SI{6.02}{dB} + \SI{10}{dB} \cdot \log_{10} \left(N\right) - \SI{1.761}{dB}}{\SI{6.02}{dB}} \\
\tilde{B} &= \frac{B \cdot \SI{6.02}{dB} + \SI{10}{dB} \cdot \log_{10} \left(N\right)}{\SI{6.02}{dB}}
\end{split}
\end{equation}
$\tilde{B}$ is the \index{effective number of bits!down-sampling} \textbf{\acf{ENOB}}, which would have been necessary if the analogue signal was directly sampled of the decimated sampling frequency $\frac{1}{T_{S,o}} = \frac{1}{N T_{S,i}}$.
The processing gain adds $\Delta B$ bits in significance of the quantized values.
\begin{equation}
\Delta B = \tilde{B} - B = \frac{\SI{10}{dB} \cdot \log_{10} \left(N\right)}{\SI{6.02}{dB}}
\end{equation}
\begin{remark}
When such a system is implemented in real, the designer must be careful and really add the bits in the implementation. For example, if the input signal is stored at the \ac{ADC} bit size of \SI{8}{bit} and the processing gain adds \SI{3}{bit}, the output must be stored in the next word size that the machine supports, e.g. \SI{16}{bit}. When it is stored as a \SI{8}{bit} value again, the processing gain is immediately lost due to truncation.
\end{remark}
The real number of bits of the \ac{ADC} is not changed. The new number of bits is solely the corollary of the processing.
\begin{conclusion}
The processing gain, which is a result of the decimation, improves the \ac{SNR} and increases the \ac{ENOB}.
\vspace{0.5em}
Sampling the analogue signal at a much higher frequency than required by the Shannon-Nyquist theorem is called \index{oversampling} \textbf{oversampling}. Oversampling may be used to increase the \ac{ENOB} of the \ac{ADC} and improve the receiver sensitivity.
\end{conclusion}
\subsection{Up-sampling}
\todo{Upsampling, Interpolation}
\todo{Inserting zeros, filtering}
\begin{excursus}{\acs{CIC} filter}
The \index{cascaded integrator-comb} \textbf{\acf{CIC}} filter an optimized \ac{FIR} filter.
\end{excursus}
\todo{CIC filter}
\section{Fast Fourier Transform}
\todo{FFT}
\todo{IFFT}
\section{Spread Spectrum}
\todo{Purpose: Noise immunity}
\todo{Purpose: Immunity against narrowband disturbances}
\todo{Purpose: Coexistence with other services}
\subsection{Direct-Sequence Spread Spectrum}
\todo{Processing Gain}
\subsection{Frequency-Hopping Spread Spectrum}
\subsection{Time-Hopping Spread Spectrum}
\section{Multi-carrier Modulation}
\todo{OFDM}
\phantomsection
\addcontentsline{toc}{section}{References}
\printbibliography[heading=subbibliography]
\end{refsection}
|