summaryrefslogtreecommitdiff
path: root/exercise02/exercise02.tex
blob: 51099f7cf1a1ad84e10ea76dfc982762fcc16ec5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
\phantomsection
\addcontentsline{toc}{section}{Exercise 2}
\section*{Exercise 2}

\begin{question}[subtitle={Mono-chromatic Signals}]
	A mono-chromatic signal $u(t)$ is given:
	\begin{equation*}
		u(t) = \SI{2}{V} \cdot \cos\left(2 \pi \cdot \SI{1}{MHz} \cdot t + \frac{\pi}{2} \right)
	\end{equation*}
	\begin{tasks}
		\task
		How much is the frequency and angular frequency? How much is the amplitude? How much is the phase?
		\task
		Give the phasor of the signal!
		\task
		An DC bias is added to the signal $u(t)$.
		\begin{equation*}
			u_2(t) = \SI{1}{V} + \SI{2}{V} \cdot \cos\left(2 \pi \cdot \SI{1}{MHz} \cdot t + \frac{\pi}{2} \right)
		\end{equation*}
		Is the resulting signal $u_2(t)$ still mono-chromatic?
	\end{tasks}
\end{question}

\begin{solution}
	\begin{tasks}
		\task
		\begin{itemize}
			\item Frequency: \SI{1}{MHz}
			\item Angular frequency: $2 \pi \cdot \SI{1}{MHz} = \SI{6283185.3}{s^{-1}}$
			\item Phase: $\SI{-\pi/2}{rad}$ or \SI{-90}{\degree}
			\item Amplitude: \SI{2}{V}
		\end{itemize}
		\task
		$\underline{U} = \SI{2}{V} \cdot e^{+j \frac{\pi}{2}}$ or $\underline{U} = \SI{2}{V} \angle +\frac{\pi}{2}$
		\task
		No, the DC bias adds a mono-chromatic component with a frequency of $f = 0$. $u_2(t)$ is a Fourier series.
	\end{tasks}
\end{solution}

\begin{question}
	The following periodic signal is given.
	\begin{figure}[H]
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.25\textheight},
				width=0.8\linewidth,
				scale only axis,
				xlabel={$t \text{ in } \si{s}$},
				ylabel={$x(t) \text{ in } \si{V}$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=east,
				},
				xmin=-3.5,
				xmax=3.5,
				ymin=-0.5,
				ymax=1.1,
				xtick={-3.0, -2.5, ..., 3.0},
				%ytick={0, 0.5, ..., 1.5},
				%xticklabels={0, 1, $t_0$, 3, 4, ..., 10}
			]
				\addplot[blue, thick] coordinates {(-3.0,-0.2) (-2.5,-0.2)};
				\addplot[blue, thick] coordinates {(-2.5,0.8) (-1.5,0.8)};
				\addplot[blue, thick] coordinates {(-1.5,-0.2) (-0.5,-0.2)};
				\addplot[blue, thick] coordinates {(-0.5,0.8) (0.5,0.8)};
				\addplot[blue, thick] coordinates {(0.5,-0.2) (1.5,-0.2)};
				\addplot[blue, thick] coordinates {(1.5,0.8) (2.5,0.8)};
				\addplot[blue, thick] coordinates {(2.5,-0.2) (3.0,-0.2)};
				
				\addplot[blue, thick, dashed] coordinates {(-2.5,-0.2) (-2.5,0.8)};
				\addplot[blue, thick, dashed] coordinates {(-1.5,0.8) (-1.5,-0.2)};
				\addplot[blue, thick, dashed] coordinates {(-0.5,-0.2) (-0.5,0.8)};
				\addplot[blue, thick, dashed] coordinates {(0.5,0.8) (0.5,-0.2)};
				\addplot[blue, thick, dashed] coordinates {(1.5,-0.2) (1.5,0.8)};
				\addplot[blue, thick, dashed] coordinates {(2.5,0.8) (2.5,-0.2)};
			\end{axis}
		\end{tikzpicture}
	\end{figure}
	
	\begin{tasks}
		\task
		Find a functional expression for the above signal!
		\task
		What is the base frequency?
		\task
		Find the real-valued Fourier series coefficients $a_n$ and $b_m$!
		\task
		Find the complex-valued Fourier series coefficients $\underline{c}_n$!
		\task
		Plot the amplitude and phase spectra for $-5 \leq n \leq 5$!
	\end{tasks}
\end{question}

\begin{solution}
	\begin{tasks}
		\task
		\begin{equation*}
			x(t) = \begin{cases}
				\SI{-0.2}{V}, &\quad \text{ if} \; \left(\SI{-0.5}{s} + n \cdot \SI{2}{s}\right) \leq t < \left(\SI{0.5}{s} + n \cdot \SI{2}{s}\right)  \\
				\SI{-0.2}{V}, &\quad \text{ if} \; \left(\SI{0.5}{s} + n \cdot \SI{2}{s}\right) \leq t < \left(\SI{1.5}{s} + n \cdot \SI{2}{s}\right) \\
			\end{cases} \qquad \forall \; n \in \mathbb{Z}
		\end{equation*}
		
		\task
		\begin{itemize}
			\item Period: $T_0 = \SI{2}{s}$
			\item Base frequency: $f_0 = \SI{0,5}{Hz}$
			\item Base angular frequency: $\omega_0 = \SI{3.14}{s^{-1}}$
		\end{itemize}
	
		%TODO
	\end{tasks}
\end{solution}

\begin{question}[subtitle={Using the Fourier Transform}]
	Derive the Fourier transform, without using the duality, of
	\begin{tasks}
		\task
		the time shift
		\begin{equation*}
			\mathcal{F}\left\{\underline{f}(t - t_0)\right\}
		\end{equation*}
		
		\task
		the frequency shift
		\begin{equation*}
			\mathcal{F}\left\{e^{j \omega_0 t} \underline{f}(t)\right\}
		\end{equation*}
		
		%\task
		%Derive the Fourier transform of the frequency shift using the time shift and duality!
	\end{tasks}
\end{question}

\begin{solution}
	\begin{tasks}
		\task
		Let
		\begin{equation*}
			\underline{h}(t) = \underline{f}(t - t_0)
		\end{equation*}
		The Fourier transform:
		\begin{equation*}
			\mathcal{F}\left\{\underline{h}(t)\right\} = \int\limits_{t = -\infty}^{\infty} \underline{f}(t - t_0) \cdot e^{-j \omega t} \, \mathrm{d} t
		\end{equation*}
		Substitute $t' = (t - t_0)$ in the integral.
		\begin{equation*}
			\mathcal{F}\left\{\underline{h}(t)\right\} = \int\limits_{t' = -\infty}^{\infty} \underline{f}(t') \cdot e^{-j \omega (t' + t_0)} \, \mathrm{d} t'
		\end{equation*}
		$e^{-j \omega t_0}$ is a constant.
		\begin{equation*}
			\mathcal{F}\left\{\underline{h}(t)\right\} = e^{-j \omega t_0} \underbrace{\int\limits_{t' = -\infty}^{\infty} \underline{f}(t') \cdot e^{-j \omega t'} \, \mathrm{d} t'}_{= \mathcal{F}\left\{\underline{f}(t)\right\} }
		\end{equation*}
		
		\task
		Let
		\begin{equation*}
			\underline{h}(t) = e^{j \omega_0 t} \underline{f}(t)
		\end{equation*}
		The Fourier transform:
		\begin{equation*}
			\mathcal{F}\left\{\underline{h}(t)\right\} = \int\limits_{t = -\infty}^{\infty} e^{j \omega_0 t} \underline{f}(t) \cdot e^{-j \omega t} \, \mathrm{d} t
		\end{equation*}
		Factor out $j t$ in the $e$-function.
		\begin{equation*}
			\mathcal{F}\left\{\underline{h}(t)\right\} = \int\limits_{t = -\infty}^{\infty} \underline{f}(t) \cdot e^{-j (\omega - \omega_0) t} \, \mathrm{d} t
		\end{equation*}
		Substitute $\omega' = \omega - \omega_0$ in the integral.
		\begin{equation*}
			\mathcal{F}\left\{\underline{h}(t)\right\} = \underbrace{\int\limits_{t = -\infty}^{\infty} \underline{f}(t) \cdot e^{-j \omega' t} \, \mathrm{d} t}_{= \mathcal{F}\left\{\underline{f}(t)\right\}}
		\end{equation*}
		\begin{equation*}
			\mathcal{F}\left\{\underline{h}(t)\right\} = \underline{F}\left(j \omega' \right) = \underline{F}\left(j \left(\omega - \omega_0\right) \right)
		\end{equation*}
		
%		\task
%		Let
%		\begin{equation*}
%			\underline{g}(t) = \underline{f}(t - t_0)
%		\end{equation*}
%		We know from a) that
%		\begin{equation*}
%			\underline{G}\left(\omega \right) = \mathcal{F}\left\{\underline{g}(t)\right\} = e^{-j \omega t_0} \cdot \underline{F}\left(\omega \right)
%		\end{equation*}
%		Now, swap $\omega$ and $t$, swap $t_0$ and $\frac{\omega_0}{2 \pi}$, and assume both $\underline{G}$ and $\underline{F}$ are time-domain functions from now on. $\underline{F}$ now represents the original time-domain function which is shifted in frequency.
%		\begin{equation*}
%			\underline{G}\left(t\right) = e^{- j \frac{\omega_0}{2 \pi} t} \cdot \underline{F}\left(t \right)
%		\end{equation*}
%		We already know $\underline{g}$. Assume that both $\underline{g}$ and $\underline{f}$ are frequency-domain functions now. Therefore, swap $\omega$ and $t$, ans swap $t_0$ and $\frac{2 \pi}{\omega_0}$, too.
%		\begin{equation*}
%			\mathcal{F}\left\{\underline{G}(t)\right\} = 2 \pi \cdot \underline{g}\left(- \omega\right) = \underline{f}\left(- \omega + \omega_0\right) = \underline{f}\left(\omega - \omega_0\right)
%		\end{equation*}
%		
%		We obtain the same result as in b). The duality works. \acs{QED}
	\end{tasks}
\end{solution}

\begin{question}[subtitle={Fourier Transform of Signals}]
	The following signal is given!
	\begin{equation*}
		\underline{x}(t) = j \cos\left(\omega_0 t\right) - \sin\left(\omega_0 t\right)
	\end{equation*}
	
	\begin{tasks}
		\task
		What is the Fourier transform of the signal?
		\task
		Plot the amplitude and phase spectra!
		\task
		Why does the spectrum not fulfil the symmetry rules?
	\end{tasks}
\end{question}

\begin{solution}
	\begin{tasks}
		\task
		\begin{equation*}
			\underline{X}\left(j \omega\right) = j 2 \pi \delta\left(\omega - \omega_0\right)
		\end{equation*}
		
		\task
		\begin{minipage}{0.45\linewidth}
			\begin{figure}[H]
				\centering
				\begin{tikzpicture}
					\begin{axis}[
						height={0.25\textheight},
						width=0.9\linewidth,
						scale only axis,
						xlabel={$\omega \text{ in } \si{Hz}$},
						ylabel={$\left|\underline{X}\left(j \omega\right)\right| \text{ in } \si{V/Hz}$},
						%grid style={line width=.6pt, color=lightgray},
						%grid=both,
						grid=none,
						legend pos=north east,
						axis y line=middle,
						axis x line=middle,
						every axis x label/.style={
							at={(ticklabel* cs:1.05)},
							anchor=north,
						},
						every axis y label/.style={
							at={(ticklabel* cs:1.05)},
							anchor=east,
						},
						xmin=-2.5,
						xmax=2.5,
						ymin=0,
						ymax=6.5,
						xtick={-1, 0, 1},
						xticklabels={$-\omega_0$, 0, $\omega_0$},
						ytick={0, 6.28},
						yticklabels={0, 6.28},
					]
						\addplot[blue, thick] coordinates {(1,0) (1,6.28)};
						\addplot[blue, thick, only marks, mark=o] coordinates {(1,6.28)};
					\end{axis}
				\end{tikzpicture}
			\end{figure}
		\end{minipage}
		\hfill
		\begin{minipage}{0.45\linewidth}
			\begin{figure}[H]
				\centering
				\begin{tikzpicture}
					\begin{axis}[
						height={0.25\textheight},
						width=0.9\linewidth,
						scale only axis,
						xlabel={$\omega \text{ in } \si{Hz}$},
						ylabel={$\arg\left(\underline{X}\left(j \omega\right)\right) \text{ in } \si{\degree}$},
						%grid style={line width=.6pt, color=lightgray},
						%grid=both,
						grid=none,
						legend pos=north east,
						axis y line=middle,
						axis x line=middle,
						every axis x label/.style={
							at={(ticklabel* cs:1.05)},
							anchor=north,
						},
						every axis y label/.style={
							at={(ticklabel* cs:1.05)},
							anchor=east,
						},
						xmin=-2.5,
						xmax=2.5,
						ymin=-3.5,
						ymax=3.5,
						xtick={-1, 0, 1},
						xticklabels={$-\omega_0$, 0, $\omega_0$},
						ytick={-3.14, -1.57, 0, 1.57, 3.14},
						yticklabels={$-\pi$, $-\frac{\pi}{2}$, 0, $\frac{\pi}{2}$, $\pi$},
					]
						\addplot[blue, thick] coordinates {(1,0) (1,1.57)};
						\addplot[blue, thick, only marks, mark=o] coordinates {(1,1.57)};
					\end{axis}
				\end{tikzpicture}
			\end{figure}
		\end{minipage}
		
		\task
		The signal is complex-valued. The symmetry rules only apply for real-valued signals.
	\end{tasks}
\end{solution}

\begin{question}
	The following circuit is given.
	\begin{figure}[H]
		\centering
		\begin{circuitikz}
			\draw (0, 0) to[L, l=$L$, o-] ++(2,0) to[short, *-o] ++(2,0);
			\draw (2, 0) to[C, l=$C$, -*] ++(0,-2);
			\draw (0, -2) to[short, o-o] ++(4,0);
			
			\draw (0, 0) to[open, v=$u_i(t)$] (0, -2);
			\draw (4, 0) to[open, v^=$u_o(t)$] (4, -2);
		\end{circuitikz}
	\end{figure}
	\begin{tasks}
		\task
		Find a differential equation which connects $u_i(t)$ and $u_o(t)$!
		\task
		Determine the transfer function $\underline{H} \left(j \omega\right)$!
		\task
		Calculate the impulse response!
		\task
		Is the system causal? Why?
		\task
		What filter characteristic does the circuit have? Which order does the system have?
	\end{tasks}
\end{question}

\begin{question}
	\begin{figure}[H]
		\centering
		\begin{circuitikz}
			\draw (0, 0) to[C, l=$C$, o-] ++(2,0) to[short, *-o] ++(2,0);
			\draw (2, 0) to[R, l=$R$, -*] ++(0,-2);
			\draw (0, -2) to[short, o-o] ++(4,0);
			
			\draw (0, 0) to[open, v=$u_i(t)$] (0, -2);
			\draw (4, 0) to[open, v^=$u_o(t)$] (4, -2);
		\end{circuitikz}
	\end{figure}
	
	The high-pass filter has the following transfer function:
	\begin{equation}
		\underline{H}\left(j \omega\right) = \frac{j \omega RC}{j \omega RC + 1}
	\end{equation}
	with
	\begin{itemize}
		\item $R = \SI{100}{\ohm}$
		\item $C = \SI{470}{nF}$
	\end{itemize}
	
	\begin{tasks}
		\task
		Which order does the system have?
		\task
		What are the poles and zeroes of the system? Is the system stable?
		\task
		Determine and plot the amplitude response $\left|\underline{H}\left(j \omega\right)\right|$!
		\task
		Determine and plot the phase response $\arg\left(\underline{H}\left(j \omega\right)\right)$!
		\task
		The following signal is applied to the input of the system $u_i(t)$.
		\begin{equation}
			u_i(t) = \SI{2}{V} \cos\left(2 \pi \cdot \SI{25}{kHz} \cdot t\right)
		\end{equation}
		Calculate the output signal $u_o(t)$ as either a time domain function or a phasor!
	\end{tasks}
\end{question}

\begin{solution}
	\begin{tasks}
		\task
		1st order
		\begin{itemize}
			\item Only one capacity as a memorizing component
			\item Highest exponent is $1$.
		\end{itemize}
	
		\task
		Replace $j \omega$ by $\underline{s}$.
		\begin{itemize}
			\item Zero: $\underline{s}_0 = 0$ (Numerator of $\underline{H}\left(j \omega\right)$ must be zero)
			\item Pole: Denominator of $\underline{H}\left(j \omega\right)$ must be zero
			\begin{equation*}
				\begin{split}
					\underline{s}_{\infty} &= -\frac{1}{RC} \\
					 &= -\frac{1}{\SI{100}{\ohm} \cdot \SI{470}{nF}} \\
					 &= \SI{-21276.6}{s^{-1}}
				\end{split}
			\end{equation*}
		\end{itemize}
		The system is stable because the real part of its pole is negative.
		
		%TODO
	\end{tasks}
\end{solution}