summaryrefslogtreecommitdiff
path: root/exercise03/exercise03.tex
blob: be192cee8e9fa1ad0a48d06fa1d801bf6548885e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
% SPDX-License-Identifier: CC-BY-SA-4.0
%
% Copyright (c) 2020 Philipp Le
%
% Except where otherwise noted, this work is licensed under a
% Creative Commons Attribution-ShareAlike 4.0 License.
%
% Please find the full copy of the licence at:
% https://creativecommons.org/licenses/by-sa/4.0/legalcode

\phantomsection
\addcontentsline{toc}{section}{Exercise 3}
\section*{Exercise 3}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{question}[subtitle={Stochastic Process}]
	A normally distributed random process produces the sequences $x_1(t)$, $x_2(t)$ and $x_3(t)$.
	\begin{table}[H]
		\centering
		\begin{tabular}{|l|r|r|r|r|r|r|r|r|r|r|}
			\hline
			$t$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
			\hline
			\hline
			$x_1(t)$ & 4.99 & 4.37 & 8.57 & 4.01 & 3.77 & 3.35 & 3.87 & 8.39 & 6.89 & 1.96 \\
			\hline
			$x_2(t)$ & 3.95 & 5.35 & 2.94 & 6.38 & 4.78 & 7.62 & 5.25 & 6.81 & 5.65 & 5.29 \\
			\hline
			$x_3(t)$ & 7.01 & 4.40 & 4.26 & 6.54 & 4.53 & 6.85 & 4.46 & 5.81 & 6.49 & 4.11 \\
			\hline
		\end{tabular}
	\end{table}
	\begin{tasks}
		\task
		Calculate the stochastic mean for each time instance!
		
		\task
		Calculate the temporal mean for each sequence!
		
		\task
		The process is ergodic with $\mu_x = 5.00$. However, why is the condition $\E\left\{\vect{x}\right\} = \overline{x} = \mu_x$ not fulfilled?
	\end{tasks}
\end{question}

\begin{solution}
	\begin{tasks}
		\task
		\begin{table}[H]
			\centering
			\begin{tabular}{|l|r|r|r|r|r|r|r|r|r|r|}
				\hline
				$t$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
				\hline
				\hline
				$\E\left\{\vect{x}(t)\right\}$ & 5.32 & 4.71 & 5.26 & 5.64 & 4.36 & 5.94 & 4.53 & 7.00 & 6.34 & 3.79 \\
				\hline
			\end{tabular}
		\end{table}
	
		\task
		\begin{itemize}
			\item $\overline{x_1} = 5.01$
			\item $\overline{x_1} = 5.40$
			\item $\overline{x_1} = 5.45$
		\end{itemize}
	
		\task
		\begin{itemize}
			\item There are only $N = 3$ sequences drawn from the random process. $\E\left\{\vect{x}\right\}$ will converge to $5.00$ for $N \rightarrow \infty$. $N = 3$ is too short.
			\item Each sequence is only $L = 10$ samples long. $\overline{x}$ will converge to $5.00$ for $L \rightarrow \infty$. $L = 10$ is too short.
		\end{itemize}
	\end{tasks}
\end{solution}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{question}[subtitle={Cross-Correlation and Autocorrelation}]
	Two signals are given $f_1(t)$ and $f_2(t)$. The signals are value- and time-continuous. Ten samples are given. Both signals are zero for $t < -5$ and $t > 5$.
	\begin{table}[H]
		\centering
		\begin{tabular}{|l|r|r|r|r|r|r|r|r|r|r|r|}
			\hline
			$t$ & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
			\hline
			\hline
			$f_1(t)$ & 0 & 1 & 2 & 3 & 4 & 5 & 4 & 3 & 2 & 1 & 0 \\
			$f_2(t)$ & -1.34 & 0.30 & 14.54 & -1.54 & -3.03 & -1.72 & 14.16 & 2.70 & 1.17 & -2.44 & -4.66 \\
			\hline
		\end{tabular}
	\end{table}
	\begin{tasks}
		\task
		Calculate the cross-correlation
		\begin{equation*}
			\mathrm{R}_{f_1 f_2}(\tau) \approx \left(f_1 \star f_2\right)(\tau) = \sum\limits_{t=-5}^{5} f_1(t) f_2(t + \tau)
		\end{equation*}
		for $t = -2$, $t = -1$ and $t = 0$.
		
		\task
		Signal $f_2(t)$ contains signal $f_1(t)$ which is superimposed by noise. Using the values calculated in a), how much is the time $\Delta t$ lag between $f_1(t)$ and $f_2(t)$?
		
		\task
		Calculate the autocorrelation
		\begin{equation*}
			\mathrm{R}_{f_1 f_1}(\tau) \approx \left(f_1 \star f_1\right)(\tau) = \sum\limits_{t=-5}^{5} f_1(t) f_1(t + \tau)
		\end{equation*}
		for $t = -2$, $t = -1$, $t = 0$, $t = 1$ and $t = 2$.
		
		\task
		How much is the signal energy $E$ of $f_1(t)$?
		\begin{equation*}
			E \approx \frac{1}{T} \sum\limits_{t=-5}^{5} \left|f_1(t)\right|^2
		\end{equation*}
		with $T = 11$?
	\end{tasks}

	\textit{Remark:} Only samples of the functions with a spacing of $1$ are given. Therefore, the indefinite integrals of both cross-correlation and autocorrelation can be approximated using the sums.
\end{question}

\begin{solution}
	\begin{tasks}
		\task
		Full cross-correlation between $-10 \geq t \geq 10$. The cross-correlation is zero everywhere outside of the interval.
		\begin{table}[H]
			\centering
			\begin{tabular}{|l|r|r|r|r|r|r|r|r|r|}
				\hline
				$\tau$ & -10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 \\
				\hline
				$\mathrm{R}_{f_1 f_2}(\tau)$ & 0.0   &  -4.66 & -11.76 & -17.69 & -20.92 &  -9.99 &   8.54 &  28.92 & 45.42 \\
				\hline
				\hline
				$\tau$ & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
				\hline
				$\mathrm{R}_{f_1 f_2}(\tau)$ &  71.06 &  68.68 &  63.74 &  62.42 &  65.35 &  41.9  &  32.01 & 23.08 &  11.12 \\
				\hline
				\hline
				$\tau$ & 8 & 9 & 10 & & & & & & \\
				\hline
				$\mathrm{R}_{f_1 f_2}(\tau)$ & -2.38 &  -1.34 &   0.0 & & & & & & \\
				\hline
			\end{tabular}
		\end{table}
		\begin{itemize}
			\item $\left(f_1 \star f_2\right)(-2) = 45.42$
			\item $\left(f_1 \star f_2\right)(-1) = 71.06$
			\item $\left(f_1 \star f_2\right)(0) = 68.68$
		\end{itemize}
	
		\task
		\begin{itemize}
			\item The maximum value is at $\tau = -1$.
			\item $f_2(t)$ is advanced by $\Delta t = 1$ in relation to $f_1(t)$.
		\end{itemize}
	
		\task
		Full autocorrelation between $-10 \geq t \geq 10$. The autocorrelation is zero everywhere outside of the interval.
		\begin{table}[H]
			\centering
			\begin{tabular}{|l|r|r|r|r|r|r|r|r|r|r|r|}
				\hline
				$\tau$ & -10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 \\
				\hline
				$\mathrm{R}_{f_1 f_1}(\tau)$ & 0 &  0 &  1 &  4 & 10 & 20 & 3. & 52 & 68 & 80 & 85 \\
				\hline
				\hline
				$\tau$ & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \\
				\hline
				$\mathrm{R}_{f_1 f_1}(\tau)$ & 80 & 68 & 52 & 35 & 20 & 10 &  4 &  1 &  0 &  0 & \\
				\hline
			\end{tabular}
		\end{table}
		Only three values must be calculated:
		\begin{itemize}
			\item $\mathrm{R}_{f_1 f_1}(\tau)(-2) = 68$
			\item $\mathrm{R}_{f_1 f_1}(\tau)(-1) = 80$
			\item $\mathrm{R}_{f_1 f_1}(\tau)(0) = 85$
		\end{itemize}
		The other two values can be deducted from the symmetry rules:
		\begin{itemize}
			\item $\mathrm{R}_{f_1 f_1}(\tau)(1) = \mathrm{R}_{f_1 f_1}(\tau)(-1) = 80$
			\item $\mathrm{R}_{f_1 f_1}(\tau)(2) = \mathrm{R}_{f_1 f_1}(\tau)(-2) = 68$
		\end{itemize}
	
		\task
		\begin{itemize}
			\item It is not necessary to solve the sum again.
			\item The sum is $\mathrm{R}_{f_1 f_1}(\tau)(0)$.
			\item The energy is
			\begin{equation*}
				E = \frac{1}{11} \mathrm{R}_{f_1 f_1}(\tau)(0) = 7.23
			\end{equation*}
		\end{itemize}
	\end{tasks}
\end{solution}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{question}[subtitle={Power Spectral Density}]
	Are the following statements about the power spectral density (PSD) true or false? If false, correct the statement!
	\begin{tasks}
		\task
		The PSD is measure for the fraction of power which is located at a certain frequency.
		
		\task
		The unit of the PSD is the same as the signal.
		
		\task
		The PSD is even, if the signal is purely real-valued.
		
		\task
		The PSD is odd, if the signal is complex-valued.
		
		\task
		The PSD is always real-valued.
		
		\task
		The PSD can be used to determine the output signal of an LTI system in amplitude and phase.
		
	\end{tasks}
\end{question}

\begin{solution}
	\begin{tasks}
		\task
		True. The signal power can be obtained by integration of the PSD over all frequencies.
		\begin{equation*}
			P = \int\limits_{-\infty}^{\infty} \mathrm{S}_{xx}(\omega) \; \mathrm{d} \omega
		\end{equation*}
		
		\task
		False.
		\begin{equation*}
			\left(\text{Unit of PSD}\right) = \frac{\left(\text{Unit of signal}\right)^2}{\left(\text{Unit of frequency}\right)}
		\end{equation*}
		
		For example \si{W/Hz}. Never \si{W} only, because it is the density of the power across the frequency.
		
		\task
		True
		
		\task
		False. There are no symmetry rules for the PSD, if the signal is complex-valued.
		
		\task
		True.
		\begin{itemize}
			\item The autocorrelation function is always Hermitian.
			\item The Fourier transform of a Hermitian function is always real-valued.
			\item Therefore, the PSD is real-valued.
		\end{itemize}
		
		\task
		False.
		\begin{itemize}
			\item Only the amplitude can be calculated.
			\item The phase information of the system is lost by squaring the absolute value of the transfer funtion.
			\item Furthermore, the PSD does not contain phase information of the signal.
		\end{itemize}
	\begin{equation*}
		\mathrm{S}_{yy}(\omega) = \left|\underline{H}\left(j \omega\right)\right|^2 \cdot \mathrm{S}_{xx}(\omega)
	\end{equation*}
	\end{tasks}
\end{solution}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{question}[subtitle={Decibel}]
	\begin{tasks}
		\task
		Convert to logarithmic scale or vice versa!
		\begin{enumerate}
			\item \SI{2}{mW}, $P_0 = \SI{1}{mW}$
			\item \SI{2}{V}, $U_0 = \SI{1}{V}$
			\item \num{400000}
			\item \SI{5}{GHz}, $f_0 = \SI{1}{Hz}$
			\item \SI{8}{fW/MHz}, $P_0 = \SI{1}{mW}$
			\item \SI{5}{dB\micro\volt}
			\item \SI{-10}{dBm}
		\end{enumerate}
	
		\task
		Convert to logarithmic scale or vice versa!
		\begin{enumerate}
			\item $1$
			\item $2$
			\item $4$
			\item $0.5$
			\item $0.25$
			\item $10$
			\item $100$
			\item $0.1$
			\item $0.01$
			\item $500$
			\item $0.04$
		\end{enumerate}
	
		\task
		A signal is transmitted with a power of \SI{13}{dBm}. The signal is attenuated by \SI{86}{dB} on its way to the receiver. Assume that a ohmic resistance of \SI{50}{\ohm} is connected to the antenna. What voltage can be measured at this resistance? Give your result in linear and logarithmic scale!
	\end{tasks}
\end{question}

\begin{solution}
	\begin{tasks}
		\task
		\begin{enumerate}
			\item $\SI{10}{dBm} \cdot \log_{10} \left(\frac{\SI{2}{mW}}{\SI{1}{mW}}\right) = \SI{3}{dBm}$
			\item $\SI{20}{dBV} \cdot \log_{10} \left(\frac{\SI{2}{V}}{\SI{1}{V}}\right) = \SI{6}{dBV}$ (20 instead of 10 for voltages and currents)
			\item $\SI{10}{dB} \cdot \log_{10} \left(400000\right) = \SI{53}{dB}$
			\item $\SI{10}{dBHz} \cdot \log_{10} \left(\frac{\SI{5}{GHz}}{\SI{1}{Hz}}\right) = \SI{97}{dbHz}$
			\item $\SI{10}{dBm/Hz} \cdot \log_{10} \left(\frac{\SI{8}{fW}}{\SI{1}{mW}}\right) = \SI{-111}{dB/Hz}$
			\item $\SI{1}{\micro\volt} \cdot 10^{\SI{5}{dB\micro\volt} / 20} = \SI{1.8}{\micro\volt}$
			\item $\SI{1}{mW} \cdot 10^{\SI{-10}{dBm} / 10} = \SI{100}{\micro.W}$
		\end{enumerate}
	
		\task
		\begin{enumerate}
			\item $\SI{0}{dB}$
			\item $\SI{3}{dB}$
			\item $\SI{6}{dB}$, Hint: $4 = 2 \cdot 2 \equiv \SI{3}{dB} + \SI{3}{dB} = \SI{6}{dB}$
			\item $\SI{-3}{dB}$
			\item $\SI{-6}{dB}$, Hint: $0.25 = 0.5 \cdot 0.5 \equiv \SI{-3}{dB} + \SI{-3}{dB} = \SI{-6}{dB}$
			\item $\SI{10}{dB}$
			\item $\SI{20}{dB}$
			\item $\SI{-10}{dB}$
			\item $\SI{-20}{dB}$
			\item $\SI{27}{dB}$, Hint: $50 = 10 \cdot 10 \cdot 10 \cdot 0.5 \equiv \SI{10}{dB} + \SI{10}{dB} + \SI{10}{dB} - \SI{3}{dB} = \SI{27}{dB}$
			\item $\SI{-14}{dB}$, Hint: $0.04 = 0.1 \cdot 0.1 \cdot 2 \cdot 2 \equiv \SI{-10}{dB} + \SI{-10}{dB} + \SI{3}{dB} + \SI{3}{dB} = \SI{-14}{dB}$
		\end{enumerate}
		Remember these rules as an RF engineer! You will need them often. ;)
		
		\task
		Power at the receiver antenna:
		\begin{equation*}
			\SI{13}{dBm} \underbrace{- \SI{86}{dB}}_{\text{Atennuation}} = \SI{-73}{dBm}
		\end{equation*}
		
		\begin{itemize}
			\item 1st way: Convert to linear scale, then back to logarithmic scale
			\begin{equation*}
				\begin{split}
					\SI{-73}{dBm} &\equiv \SI{50.1}{pW} \\
					U = \sqrt{P \cdot R} &= \sqrt{\SI{50.1}{pW} \cdot \SI{50}{\ohm}} = \SI{50}{\micro\volt} \\
					\SI{50}{\micro\volt} &\equiv \SI{17}{dB\micro\volt}
				\end{split}
			\end{equation*}
			\item 2nd way: Convert everything to logarithmic scale. The multiplication of power and resistance must happen with ``pure'' SI units.
			\begin{equation*}
			\begin{split}
				\SI{50}{\ohm} &\equiv \SI{10}{dB\ohm} \cdot \log_{10} \left(\frac{\SI{50}{\ohm}}{\SI{1}{\ohm}}\right) = \SI{17}{dB\ohm} \\
				\SI{-73}{dBm} \underbrace{- \SI{30}{dB}}_{\text{\si{mW} to \si{W}}} &= \SI{-103}{dBW} \quad \text{SI unit!} \\
				\SI{-103}{dBW} + \SI{17}{dB\ohm} &= \SI{-86}{dBV} \quad \text{SI unit!} \\
				\SI{-86}{dBV} \underbrace{+ \SI{120}{dB}}_{\text{\si{V} to \si{\micro\volt}}} &= \SI{34}{dB\micro\volt} \\
				\SI{34}{dB\micro\volt} &\equiv \SI{50}{\micro\volt}
			\end{split}
			\end{equation*}
		\end{itemize}
	\end{tasks}
\end{solution}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{question}[subtitle={Noise}]
	The following system is given:
	\begin{figure}[H]
		\centering
		\begin{adjustbox}{scale=0.7}
			\begin{tikzpicture}
				\node[draw, block] (BPF){Band-pass filter\\ $L_{G,1} = \SI{-3}{dB}$\\ $L_{F,1} = \SI{3}{dB}$};
				\node[draw, block, right=of BPF] (Mix){Mixer\\ $L_{G,2} = \SI{3}{dB}$\\ $L_{F,2} = \SI{20}{dB}$};
				\node[draw, block, right=of Mix] (Demod){Demodulator\\ $L_{G,3} = \SI{6}{dB}$\\ $L_{F,3} = \SI{10}{dB}$};
				\node[draw, block, right=of Demod] (Amp){Amplifier\\ $L_{G,4} = \SI{50}{dB}$\\ $L_{F,4} = \SI{16}{dB}$};
				
				\draw[o->] ([xshift=-1cm]BPF.west) node[left,align=right]{Input $u(t)$} -- (BPF.west);
				\draw[->] (BPF.east) -- (Mix.west);
				\draw[->] (Mix.east) -- (Demod.west);
				\draw[->] (Demod.east) -- (Amp.west);
				\draw[->] (Amp.east) -- ([xshift=1cm]Amp.east) node[right,align=left]{Output};
			\end{tikzpicture}
		\end{adjustbox}
	\end{figure}
	\begin{itemize}
		\item The band-pass filter has an input impedance of $\SI{50}{\ohm}$.
		\item The band-pass filter has a bandwidth of $\SI{2}{MHz}$.
		\item All system components are at room temperature: \SI{25}{\degreeCelsius}.
	\end{itemize}
	The input signal is:
	\begin{equation*}
		u(t) = \SI{70.71}{\micro\volt} \cdot \cos\left(\omega_0 t\right)
	\end{equation*}
	
	Give all results in the logarithmic scale!
	\begin{tasks}
		\task
		What is the signal power, the thermal noise power and the SNR at the input?
		
		\task
		What is the overall noise figure and overall gain of the chain? What is the signal power, the thermal noise power and the SNR at the output of the chain?
		
		\task
		Now a low noise amplifier is placed in front of the mixer. The gain of the last amplifier is reduced, so that the overall gain does not change.
		\begin{figure}[H]
			\centering
			\begin{adjustbox}{scale=0.5}
				\begin{tikzpicture}
					\node[draw, block] (Amp){Low noise amplifier\\ $L_{G,0} = \SI{30}{dB}$\\ $L_{F,0} = \SI{6}{dB}$};
					\node[draw, block, right=of Amp] (BPF){Band-pass filter\\ $L_{G,1} = \SI{-3}{dB}$\\ $L_{F,1} = \SI{3}{dB}$};
					\node[draw, block, right=of BPF] (Mix){Mixer\\ $L_{G,2} = \SI{3}{dB}$\\ $L_{F,2} = \SI{20}{dB}$};
					\node[draw, block, right=of Mix] (Demod){Demodulator\\ $L_{G,3} = \SI{6}{dB}$\\ $L_{F,3} = \SI{10}{dB}$};
					\node[draw, block, right=of Demod] (Amp2){Amplifier\\ $L_{G,4} = \SI{20}{dB}$\\ $L_{F,4} = \SI{16}{dB}$};
					
					\draw[o->] ([xshift=-1cm]Amp.west) node[left,align=right]{Input $u(t)$} -- (Amp.west);
					\draw[->] (Amp.east) -- (BPF.west);
					\draw[->] (BPF.east) -- (Mix.west);
					\draw[->] (Mix.east) -- (Demod.west);
					\draw[->] (Demod.east) -- (Amp2.west);
					\draw[->] (Amp2.east) -- ([xshift=1cm]Amp2.east) node[right,align=left]{Output};
				\end{tikzpicture}
			\end{adjustbox}
		\end{figure}
		For this new constellation: What is the overall noise figure and overall gain of the chain? What is the signal power, the thermal noise power and the SNR at the output of the chain?
	\end{tasks}
\end{question}

\begin{solution}
	\begin{tasks}
		\task
		\begin{itemize}
			\item The RMS value of the signals is: $\frac{\SI{70.71}{\micro\volt}}{\sqrt{2}} = \SI{50}{\micro\volt}$
			\item At $\SI{50}{\ohm}$, this yields a power of: $P = \frac{U^2}{R} = \SI{50}{pW} \equiv L_{P,S} = \SI{-73}{dBm}$
			\item The noise floor at room temperature is: $k_B T \equiv \SI{-174}{dBm/Hz}$
			\item The filter's bandwidth is: $\SI{63}{dBHz}$
			\item The noise power is: $k_B T \Delta f \equiv L_{P,N} = \SI{-174}{dBm/Hz} + \SI{63}{dBHz} = \SI{-111}{dBm}$
			\item The SNR is: $L_{\mathrm{SNR}} = L_{P,S} - L_{P,N} = \SI{-73}{dBm} - (\SI{-111}{dBm}) = \SI{38}{dBm}$
		\end{itemize}
	
		\task
		Convert to linear scale:
		\begin{itemize}
			\item $G_1 = 0.5$
			\item $F_1 = 2$
			\item $G_2 = 2$
			\item $F_2 = 100$
			\item $G_3 = 4$
			\item $F_3 = 10$
			\item $G_4 = 100000$
			\item $F_4 = 40$
		\end{itemize}
	
		Using the Friis formula:
		\begin{equation*}
			\begin{split}
				F_{\text{total}} &= F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \frac{F_4 - 1}{G_1 G_2 G_3} \\
				 &= 218 \\
				L_{F,\text{total}} &= \SI{23.4}{dB}
			\end{split}
		\end{equation*}
		Overall gain:
		\begin{equation*}
			L_{G,\text{total}} = \SI{-3}{dB} + \SI{3}{dB} + \SI{6}{dB} + \SI{50}{dB} = \SI{56}{dB}
		\end{equation*}
		\begin{itemize}
			\item Output signal power: $\SI{-73}{dBm} + L_{G,\text{total}} = \SI{-17}{dBm}$
			\item Output noise power: $\SI{-111}{dBm} + L_{G,\text{total}} + L_{F,\text{total}} = \SI{-31.6}{dBm}$
			\item Output SNR: $\SI{38}{dBm} - L_{F,\text{total}} = \SI{14.6}{dB}$
		\end{itemize}
	
		\task
		Convert to linear scale:
		\begin{itemize}
			\item $G_0 = 1000$
			\item $F_0 = 4$
			\item $G_1 = 0.5$
			\item $F_1 = 2$
			\item $G_2 = 2$
			\item $F_2 = 100$
			\item $G_3 = 4$
			\item $F_3 = 10$
			\item $G_4 = 10$
			\item $F_4 = 40$
		\end{itemize}
	
		Using the Friis formula:
		\begin{equation*}
			\begin{split}
				F_{\text{total}} &= F_0 + \frac{F_1 - 1}{G_0} + \frac{F_2 - 1}{G_0 G_1} + \frac{F_3 - 1}{G_0 G_1 G_2} + \frac{F_4 - 1}{G_0 G_1 G_2 G_3} \\
				 &= 4.22 \\
				L_{F,\text{total}} &= \SI{6.3}{dB}
			\end{split}
		\end{equation*}
		Overall gain:
		\begin{equation*}
			L_{G,\text{total}} = \SI{50}{dB} + \SI{-3}{dB} + \SI{3}{dB} + \SI{6}{dB} = \SI{56}{dB}
		\end{equation*}
		\begin{itemize}
			\item Output signal power: $\SI{-73}{dBm} + L_{G,\text{total}} = \SI{-17}{dBm}$
			\item Output noise power: $\SI{-111}{dBm} + L_{G,\text{total}} + L_{F,\text{total}} = \SI{-48.7}{dBm}$
			\item Output SNR: $\SI{38}{dBm} - L_{F,\text{total}} = \SI{31.7}{dB}$
		\end{itemize}
	
		\textbf{Conclusion:}
		\begin{itemize}
			\item Placing the low noise amplifier in front of the chain, gives a much better ($\SI{16.1}{dB}$) SNR. The gain is equal.
			\item The overall noise figure is dominated by the first component in the chain.
			\item In this constellation, first component is a low noise amplifier with high gain and low noise figure.
			\item The high gain scales down the noise contribution of the components following in the chain.
			\item Therefore, it is always feasible to place a low noise amplifier (high gain, low noise) to the front of the chain.
		\end{itemize}
	\end{tasks}
\end{solution}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{question}[subtitle={Decibel}]
%	\begin{tasks}
%	\end{tasks}
%\end{question}
%
%\begin{solution}
%	\begin{tasks}
%	\end{tasks}
%\end{solution}