summaryrefslogtreecommitdiff
path: root/exercise05/exercise05.tex
blob: cbebde2cf335eaeba66a50d53844340811ce0517 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
% SPDX-License-Identifier: CC-BY-SA-4.0
%
% Copyright (c) 2020 Philipp Le
%
% Except where otherwise noted, this work is licensed under a
% Creative Commons Attribution-ShareAlike 4.0 License.
%
% Please find the full copy of the licence at:
% https://creativecommons.org/licenses/by-sa/4.0/legalcode

\phantomsection
\addcontentsline{toc}{section}{Exercise 5}
\section*{Exercise 5}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{question}[subtitle={Mixers}]
	\begin{tasks}
		\task
		Is the mixer a linear device like filters and amplifiers?
		\task
		What is the difference between unbalanced and balanced mixers?
		\task
		Why do mixers need a non-linear component?
	\end{tasks}
\end{question}

\begin{solution}
	\begin{tasks}
		\task
		No, it is non-linear. Its non-linear component is responsible for the mixing.
		
		A linear device would fulfil:
		\begin{equation*}
			M\left(a x + b y\right) = a M(x) + b M(y)
		\end{equation*}
		where $M(x)$ is the characteristic curve of the device. Especially the frequencies would be retained. A mixer changes the frequencies.
		
		\task
		\begin{itemize}
			\item At least one input of a balanced mixer is balanced (differential). It is capable of suppressing the carrier.
			\item An unbalanced mixer has only unbalanced (single-ended) inputs. The carrier is not suppressed.
		\end{itemize}
	
		\task
		The non-linear component is responsible for the mixing process.
		
		The characteristic curve of the non-linearity can be decomposed using a Taylor series:
		\begin{equation*}
			\begin{split}
				x_{o} &= M(x_{i} + x_{LO} + a) = \sum\limits_{n=0}^{\infty} \frac{1}{n!} \left.\frac{\mathrm{d}^n M(x)}{\mathrm{d} x^n}\right|_{x=a} \left(x_{i} + x_{LO} + a - a\right)^n \\
				 &= M(a) + \underbrace{M^{(1)}(a) \left(x_{i} + x_{LO}\right)}_{\text{Linear term}} + \underbrace{\frac{M^{(2)}(a)}{2} \left(x_{i} + x_{LO}\right)^2}_{\text{Quadratic term}} + \underbrace{\frac{M^{(3)}(a)}{6} \left(x_{i} + x_{LO}\right)^3}_{\text{Qubic term}} + \dots
				\end{split}
		\end{equation*}
		
		The quadratic term is the important part in the mixing process.
		\begin{equation*}
			\left(x_{i} + x_{LO}\right)^2 = x_{i}^2 + 2 \underbrace{x_{i} x_{LO}}_{\text{Mixing}} + x_{LO}^2
		\end{equation*}
		
		The multiplication in the time-domain becomes a convolution in the frequency-domain, which represents the mixing process.
	\end{tasks}
\end{solution}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{question}[subtitle={Mirror frequencies}]
	This is simplified block diagram of a receiver with two analogue mixing stages (super-heterodyne).
	\begin{figure}[H]
		\centering
		\begin{adjustbox}{scale=0.8}
			\begin{circuitikz}
				\node[mixer](Mixer1){};
				\node[oscillator, below=1cm of Mixer1](LO){};
				\node[mixer, right=1.5cm of Mixer1](Mixer2){};
				\node[oscillator, below=1cm of Mixer2](BFO){};
				\node[adcshape, right=2cm of Mixer2](ADC){};
				\node[block, draw, right=1cm of ADC](Baseband){Digital signal\\ processing};
				
				\draw (LO.south) node[below,align=center,yshift=-5mm]{LO};
				\draw (BFO.south) node[below,align=center,yshift=-5mm]{Fixed\\ \SI{480}{MHz}};
				\draw (Mixer1.north) node[above,align=center,yshift=3mm]{1st Mixer};
				\draw (Mixer2.north) node[above,align=center,yshift=3mm]{2nd Mixer};
				
				\draw (Mixer1.west) -- ++(-1cm,0) node[rxantenna,xscale=-1]{};
				
				\draw[-latex] (LO.north) -- (Mixer1.south);
				\draw[-latex] (BFO.north) -- (Mixer2.south);
				\draw[-latex] (Mixer1.east) to[bandpass] (Mixer2.west);
				\draw[-latex] (Mixer2.east) to[lowpass] (ADC.west);
				\draw[-latex] (ADC.east) -- (Baseband.west);
			\end{circuitikz}
		\end{adjustbox}
	\end{figure}
	A signal of \SI{868}{MHz} should be received. The baseband is not zero-IF. The signal shall be mixed down to \SI{1}{MHz} centre frequency, so that the signal can be processed digitally.

	\begin{tasks}
		\task
		How much is the minimum ADC sampling rate?
		\task
		To which frequencies can the LO be tuned to?
		\task
		The electromagnetic spectrum is shared with lots of other users. Which important piece is missing in the receiver signal chain?
		%\task
		%An IQ demodulator is used instead of the single mixer. Sketch the spectrum of the complex-valued baseband signal for both possible LO frequencies!
	\end{tasks}
\end{question}

\begin{solution}
	\begin{tasks}
		\task
		According to the Shannon-Nyquist theorem, minimum \SI{2}{MHz}.
		
		\begin{remark}
			A signal is practically never mixed to exactly \SI{0}{Hz}. All ADC have a DC bias. The sampled signal is superimposed by a DC voltage at \SI{0}{Hz} in the time-domain. This adds an error. Therefore, the signal shifted some \si{kHz} away from DC.
		\end{remark}
		
		\task
		Either
		\begin{itemize}
			\item $\SI{868}{MHz} - \SI{480}{MHz} = \SI{388}{MHz}$ or
			\item $\SI{868}{MHz} + \SI{480}{MHz} = \SI{1348}{MHz}$
		\end{itemize}
		will work.
		
		\begin{remark}
			The super-heterodyne receiver has two mixer stages. The first mixer defines the RF frequency which should be received. The first intermediate frequency is fixed. The filter has a high frequency, so that neighbouring users are eliminated and cannot disturb the wanted signal.
		\end{remark}
		
		\task
		The receiver receives on mirror frequencies.
		\begin{itemize}
			\item $\SI{480}{MHz} - \SI{388}{MHz} = \SI{92}{MHz}$ (for $f_{LO} = \SI{388}{MHz}$) or
			\item $\SI{1348}{MHz} + \SI{480}{MHz} = \SI{1828}{MHz}$ (for $f_{LO} = \SI{1348}{MHz}$)
		\end{itemize}
		will be received, too. The signals that these RF frequencies will superimpose the signal mixed down from the desired signal at \SI{868}{MHz}.
		
		The input of the first mixer must be filtered by either
		\begin{itemize}
			\item a lowpass (only for $f_{LO} = \SI{1348}{MHz}$ to block the mirror frequency at \SI{1828}{MHz}),
			\item a highpass (only for $f_{LO} = \SI{388}{MHz}$ to block the mirror frequency at \SI{92}{MHz}) or
			\item a bandpass (works for both LO configurations).
		\end{itemize}
	\end{tasks}
\end{solution}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{question}[subtitle={Constellation diagrams}]
	Draw a constellation diagram of:
	\begin{tasks}
		\task
		ASK (with 2 steps)
		\task
		BPSK
		\task
		QPSK
		\task
		16-QAM
	\end{tasks}
\end{question}

\begin{solution}
	\begin{tasks}
		\task
		\begin{figure}[H]
			\centering
			\begin{tikzpicture}
				\draw[->] (-2.2,0) -- (2.2,0) node[below right, align=left]{$\Re\left\{\underline{X}_{ASK}(t)\right\}$};
				\draw[->] (0,-2.2) -- (0,2.2) node[left, align=right]{$\Im\left\{\underline{X}_{ASK}(t)\right\}$};
				
				\draw[black,thick,fill=gray!60] (0:0.5) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{0};
				\draw[black,thick,fill=gray!60] (0:1.5) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{1};
			\end{tikzpicture}
		\end{figure}
		
		\task
		\begin{figure}[H]
			\centering
			\begin{tikzpicture}
				\draw[->] (-2.2,0) -- (2.2,0) node[below right, align=left]{$\Re\left\{\underline{X}_{BPSK}(t)\right\}$};
				\draw[->] (0,-2.2) -- (0,2.2) node[left, align=right]{$\Im\left\{\underline{X}_{BPSK}(t)\right\}$};
				
				\draw[black,thick,fill=gray!60] (0:1) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{0};
				\draw[black,thick,fill=gray!60] (180:1) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{1};
			\end{tikzpicture}
		\end{figure}
		
		\task
		\begin{figure}[H]
			\centering
			\begin{tikzpicture}
				\draw[->] (-2.2,0) -- (2.2,0) node[below right, align=left]{$\Re\left\{\underline{X}_{QPSK}(t)\right\}$};
				\draw[->] (0,-2.2) -- (0,2.2) node[left, align=right]{$\Im\left\{\underline{X}_{QPSK}(t)\right\}$};
				
				\draw[black,thick,fill=gray!60] (0:1) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{0};
				\draw[black,thick,fill=gray!60] (90:1) ++(-0.2,0) arc(-180:180:0.2) node[left,align=right]{1};
				\draw[black,thick,fill=gray!60] (180:1) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{2};
				\draw[black,thick,fill=gray!60] (270:1) ++(-0.2,0) arc(-180:180:0.2) node[left,align=right]{3};
			\end{tikzpicture}
		\end{figure}
		
		\task
		\begin{figure}[H]
			\centering
			\begin{adjustbox}{scale=1}
				\begin{tikzpicture}[scale=1]
				\draw[-latex] (-2.9,0) -- (2.9,0) node[below right, align=left]{$\Re\left\{\underline{X}_{QAM}(t)\right\}$};
				\draw[-latex] (0,-2.9) -- (0,2.9) node[left, align=right]{$\Im\left\{\underline{X}_{QAM}(t)\right\}$};
				
				\draw[black,thick,fill=gray!60] (2.25,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{0};
				\draw[black,thick,fill=gray!60] (2.25,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{1};
				\draw[black,thick,fill=gray!60] (0.75,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{2};
				\draw[black,thick,fill=gray!60] (0.75,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{3};
				
				\draw[black,thick,fill=gray!60] (2.25,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{4};
				\draw[black,thick,fill=gray!60] (2.25,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{5};
				\draw[black,thick,fill=gray!60] (0.75,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{6};
				\draw[black,thick,fill=gray!60] (0.75,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{7};
				
				\draw[black,thick,fill=gray!60] (-2.25,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{8};
				\draw[black,thick,fill=gray!60] (-2.25,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{9};
				\draw[black,thick,fill=gray!60] (-0.75,2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{10};
				\draw[black,thick,fill=gray!60] (-0.75,0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{11};
				
				\draw[black,thick,fill=gray!60] (-2.25,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{12};
				\draw[black,thick,fill=gray!60] (-2.25,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{13};
				\draw[black,thick,fill=gray!60] (-0.75,-2.25) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{14};
				\draw[black,thick,fill=gray!60] (-0.75,-0.75) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{15};
				\end{tikzpicture}
			\end{adjustbox}
		\end{figure}
	\end{tasks}
\end{solution}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{question}[subtitle={Constellation diagrams}]
	A QPSK modulator has the following mapping and symbol constellation:
	\begin{table}[H]
		\centering
		\begin{tabular}{|l|l|l|}
			\hline
			Data & Symbol & Phasor \\
			\hline
			\hline
			$(00)_2$ & 0 & $\SI{2}{mV} \cdot e^{j 0}$ \\
			\hline
			$(01)_2$ & 1 & $\SI{2}{mV} \cdot e^{j \frac{\pi}{2}}$ \\
			\hline
			$(10)_2$ & 2 & $\SI{2}{mV} \cdot e^{j \pi}$ \\
			\hline
			$(11)_2$ & 3 & $\SI{2}{mV} \cdot e^{j \frac{3 \pi}{2}}$ \\
			\hline
		\end{tabular}
	\end{table}
	The carrier is:
	\begin{equation*}
		x_C(t) = \SI{2}{mV} \cdot \cos\left(2\pi \cdot \SI{50}{MHz} \cdot t\right)
	\end{equation*}
	The symbol rate is $\SI{25}{MHz}$. After the DAC, an low-pass filter with $\SI{25}{MHz}$ cut-off frequency is applied.
	
	\begin{tasks}
		\task
		How much is the transmission bandwidth (narrowband case)?
		\task
		How many bits can be encoded per QPSK symbol? How many symbols are required to encode one byte (8 bits)?
		\task
		Draw the constellation diagram!
		\task
		The data byte $(2D)_{16}$ shall be transmitted. Give the sequence of phasors representing the data byte!
		\task
		Explain the problem with inter-symbol interference! Describe a solution!
		\task
		Plot the I and Q baseband signals! Plot the RF signal after IQ modulation! The baseband filter shall be neglected; consider ideal symbols.
		\task
		The following phasors are received at the receiver:
		\begin{equation*}
			\left[\SI{1.5}{mV} \cdot e^{j \SI{120}{\degree}}, \SI{1.5}{mV} \cdot e^{j \SI{300}{\degree}}, \SI{1.5}{mV} \cdot e^{j \SI{30}{\degree}}, \SI{1.5}{mV} \cdot e^{j \SI{210}{\degree}}\right]
		\end{equation*}
		What would the decoded data be? What is the matter?
	\end{tasks}
\end{question}

\begin{solution}
	\begin{tasks}
		\task
		Due to the applied lowpass filter, the bandwidth of the signal after the DAC is $\SI{25}{MHz}$. The transmission bandwidth of the QPSK is that of the PM. Here the narrowband PM is considered, so that the transmission bandwidth is $\SI{25}{MHz}$.
		
		\task
		One symbol has $K_m = 4$ states. It can encode \SI{2}{bit}.
		\begin{equation*}
			B = \log_2 K_m = 2
		\end{equation*}
		
		Consequently, if the data is \SI{8}{bit}, 4 symbols are required.
		
		\task
		\begin{figure}[H]
			\centering
			\begin{tikzpicture}
				\draw[->] (-2.2,0) -- (2.2,0) node[below right, align=left]{$\Re\left\{\underline{X}_{QPSK}(t)\right\}$};
				\draw[->] (0,-2.2) -- (0,2.2) node[above left, align=right]{$\Im\left\{\underline{X}_{QPSK}(t)\right\}$};
				
				\draw (2,-0.1) node[below]{$\SI{4}{V}$} -- (2,0.1);
				\draw (-2,-0.1) node[below]{$-\SI{4}{V}$} -- (-2,0.1);
				\draw (-0.1,2) node[left]{$\SI{4}{V}$} -- (0.1,2);
				\draw (-0.1,-2) node[left]{$-\SI{4}{V}$} -- (0.1,-2);
				
				\draw[black,thick,fill=gray!60] (0:1) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{0};
				\draw[black,thick,fill=gray!60] (90:1) ++(-0.2,0) arc(-180:180:0.2) node[left,align=right]{1};
				\draw[black,thick,fill=gray!60] (180:1) ++(0,-0.2) arc(-90:270:0.2) node[below,align=center]{2};
				\draw[black,thick,fill=gray!60] (270:1) ++(-0.2,0) arc(-180:180:0.2) node[left,align=right]{3};
			\end{tikzpicture}
		\end{figure}
		
		\task
		The hexadecimal value $(2D)_{16} = (00101101)_{2}$ in binary notation.
		
		Using the encoding:
		\begin{table}[H]
			\centering
			\begin{tabular}{|l|l|l|}
				\hline
				Data part & Symbol & Phasor \\
				\hline
				\hline
				$(00)_2$ & 0 & $\SI{2}{mV} \cdot e^{j 0}$ \\
				\hline
				$(10)_2$ & 2 & $\SI{2}{mV} \cdot e^{j \pi}$ \\
				\hline
				$(11)_2$ & 3 & $\SI{2}{mV} \cdot e^{j \frac{3 \pi}{2}}$ \\
				\hline
				$(01)_2$ & 1 & $\SI{2}{mV} \cdot e^{j \frac{\pi}{2}}$ \\
				\hline
			\end{tabular}
		\end{table}
	
		The series of phasors is:
		\begin{equation*}
			\left[\SI{2}{mV} \cdot e^{j \SI{0}{\degree}}, \SI{2}{mV} \cdot e^{j \SI{180}{\degree}}, \SI{2}{mV} \cdot e^{j \SI{270}{\degree}}, \SI{2}{mV} \cdot e^{j \SI{90}{\degree}}\right]
		\end{equation*}
		or in radians
		\begin{equation*}
			\left[\SI{2}{mV} \cdot e^{j \SI{0}{\degree}}, \SI{2}{mV} \cdot e^{j \pi}, \SI{2}{mV} \cdot e^{j \frac{3 \pi}{2}}, \SI{2}{mV} \cdot e^{j \frac{\pi}{2}}\right]
		\end{equation*}
		
		\task
		\begin{itemize}
%			\item The baseband signal is band-limited by an ideal low-pass filter.
%			\item An ideal low-pass filter has a rectangular shape in the frequency-domain.
%			\item The inverse Fourier transform of the rectangular shape is a sinc-function in the time-domain.
%			\item The ideal low-pass filter's impulse response is a sinc-function.
%			\item The series of symbols is now convoluted with the sinc-function (impulse response of the filter).
%			\item The ideal symbols, which are a rectangular function, are flattened. Their edges are rounded and spread across the time axis.
			\item The baseband signal is band-limited by an low-pass filter.
			\item Let's consider an ideal filter:
			\begin{itemize}
				\item An ideal low-pass filter has a rectangular shape in the frequency-domain.
				\item The inverse Fourier transform of the rectangular shape is a sinc-function in the time-domain.
				\item The ideal low-pass filter's impulse response is a sinc-function.
			\end{itemize}
			\item \begin{remark}The impulse response of a real low-pass filter is of course not exactly the sinc-function, but some kind of exponential function.\end{remark}
			\item The series of symbols is now convoluted with the impulse response of the filter.
			\item The ideal symbols, which are a rectangular function, are flattened. Their edges are rounded and spread across the time axis.
		\end{itemize}
		The flattened symbols will interfere with their neighbouring symbols. The decoding may fail. The data error probability is increased.
		
		\begin{figure}[H]
			\centering
			\begin{tikzpicture}
				\begin{axis}[
					height={0.15\textheight},
					width=0.7\linewidth,
					scale only axis,
					xlabel={$t$},
					ylabel={$x_{sym}(t)$},
					%grid style={line width=.6pt, color=lightgray},
					%grid=both,
					grid=none,
					legend pos=outer north east,
					axis y line=middle,
					axis x line=middle,
					every axis x label/.style={
						at={(ticklabel* cs:1.05)},
						anchor=north,
					},
					every axis y label/.style={
						at={(ticklabel* cs:1.05)},
						anchor=east,
					},
					xmin=-0.5,
					xmax=8.5,
					ymin=0,
					ymax=1.7,
					%xtick={0,0.125,...,1},
					%xticklabels={$- \omega_S$, $- \frac{\omega_S}{2}$, $0$, $\frac{\omega_S}{2}$, $\omega_S$},
					%ytick={0},
				]
					\addplot[blue,smooth] coordinates {(-1.5,0) (0,0.5) (0.5,0.85) (1,1) (1.5,0.85) (2,0.5) (3.5,0)};
					\addplot[red,smooth] coordinates {(0.5,0) (2,0.5) (2.5,0.85) (3,1) (3.5,0.85) (4,0.5) (5.5,0)};
					\addplot[green,smooth] coordinates {(2.5,0) (4,0.5) (4.5,0.85) (5,1) (5.5,0.85) (6,0.5) (7.5,0)};
					\addplot[olive,smooth] coordinates {(4.5,0) (6,0.5) (6.5,0.85) (7,1) (7.5,0.85) (8,0.5) (9.5,0)};
					
					\draw[dashed] (axis cs:2,0) -- (axis cs:2,1.2);
					\draw[dashed] (axis cs:4,0) -- (axis cs:4,1.2);
					\draw[latex-latex] (axis cs:2,1.1) -- node[midway,above,align=center]{Symbol period $T_{sym}$} (axis cs:4,1.1);
				\end{axis}
			\end{tikzpicture}
		\end{figure}
	
		A guard interval must be inserted after each symbol to reduce the inter-symbol interference.
		\begin{itemize}
			\item The guard interval must be long enough so that the contribution of one signal to its neighbours is so weak, that the symbol detection works with a low data error probability.
			\item The guard interval will reduce the effective symbol rate whilst keeping the transmission bandwidth of the signal constant.
			\item Keeping the effective symbol rate by reducing the symbol width $T_w$ (to make space for the guard interval) is also possible. But this comes a t the drawback of increasing the transmission bandwidth, which would be $1/T_w$. This is not always possible because the bandwidth is restricted by technical norms or laws.
		\end{itemize}
		
		\task
		I component:
		\begin{figure}[H]
			\centering
			\begin{tikzpicture}
				\begin{axis}[
					height={0.1\textheight},
					width=0.6\linewidth,
					scale only axis,
					xlabel={$t$ in \si{ns}},
					ylabel={$\Re\left\{\underline{x}_B(t)\right\}$},
					%grid style={line width=.6pt, color=lightgray},
					%grid=both,
					grid=none,
					legend pos=outer north east,
					axis y line=middle,
					axis x line=middle,
					every axis x label/.style={
						at={(ticklabel* cs:1.05)},
						anchor=north,
					},
					every axis y label/.style={
						at={(ticklabel* cs:1.05)},
						anchor=east,
					},
					xmin=-0.5,
					xmax=8.5,
					ymin=-1.2,
					ymax=1.2,
					xtick={0,2,4,6,8},
					xticklabels={0, 40, 80, 120, 160},
					%ytick={0},
				]
					\addplot[red] coordinates {(0,1) (2,1)};
					\addplot[red] coordinates {(2,-1) (4,-1)};
					\addplot[red] coordinates {(4,0) (8,0)};
					
					\draw[dashed] (axis cs:2,-1.6) -- (axis cs:2,1.2);
					\draw[dashed] (axis cs:4,-1.6) -- (axis cs:4,1.2);
					\draw[dashed] (axis cs:6,-1.6) -- (axis cs:6,1.2);
					\draw[dashed] (axis cs:8,-1.6) -- (axis cs:8,1.2);
					
					\draw (1,-1.5) node{0};
					\draw (3,-1.5) node{2};
					\draw (5,-1.5) node{3};
					\draw (7,-1.5) node{1};
				\end{axis}
			\end{tikzpicture}
		\end{figure}
	
		Q component:
		\begin{figure}[H]
			\centering
			\begin{tikzpicture}
				\begin{axis}[
					height={0.1\textheight},
					width=0.6\linewidth,
					scale only axis,
					xlabel={$t$ in \si{ns}},
					ylabel={$\Im\left\{\underline{x}_B(t)\right\}$},
					%grid style={line width=.6pt, color=lightgray},
					%grid=both,
					grid=none,
					legend pos=outer north east,
					axis y line=middle,
					axis x line=middle,
					every axis x label/.style={
						at={(ticklabel* cs:1.05)},
						anchor=north,
					},
					every axis y label/.style={
						at={(ticklabel* cs:1.05)},
						anchor=east,
					},
					xmin=-0.5,
					xmax=8.5,
					ymin=-1.2,
					ymax=1.2,
					xtick={0,2,4,6,8},
					xticklabels={0, 40, 80, 120, 160},
					%ytick={0},
				]
					\addplot[red] coordinates {(0,0) (4,0)};
					\addplot[red] coordinates {(4,-1) (6,-1)};
					\addplot[red] coordinates {(6,1) (8,1)};
					
					\draw[dashed] (axis cs:2,-1.6) -- (axis cs:2,1.2);
					\draw[dashed] (axis cs:4,-1.6) -- (axis cs:4,1.2);
					\draw[dashed] (axis cs:6,-1.6) -- (axis cs:6,1.2);
					\draw[dashed] (axis cs:8,-1.6) -- (axis cs:8,1.2);
					
					\draw (1,-1.5) node{0};
					\draw (3,-1.5) node{2};
					\draw (5,-1.5) node{3};
					\draw (7,-1.5) node{1};
				\end{axis}
			\end{tikzpicture}
		\end{figure}
	
		RF signal after IQ modulation:
		\begin{figure}[H]
			\centering
			\begin{tikzpicture}
				\begin{axis}[
					height={0.1\textheight},
					width=0.6\linewidth,
					scale only axis,
					xlabel={$t$ in \si{ns}},
					ylabel={$u_{RF}(t)$ in \si{mV}},
					%grid style={line width=.6pt, color=lightgray},
					%grid=both,
					grid=none,
					legend pos=outer north east,
					axis y line=middle,
					axis x line=middle,
					every axis x label/.style={
						at={(ticklabel* cs:1.05)},
						anchor=north,
					},
					every axis y label/.style={
						at={(ticklabel* cs:1.05)},
						anchor=east,
					},
					xmin=-0.5,
					xmax=8.5,
					ymin=-2.2,
					ymax=2.2,
					xtick={0,2,4,6,8},
					xticklabels={0, 40, 80, 120, 160},
					%ytick={0},
				]
					
					\addplot[red, smooth, domain=0:2, samples=50] plot(\x, {2*cos(deg(2*pi*1*\x))});
					\addplot[red, smooth, domain=2:4, samples=50] plot(\x, {2*cos(deg(2*pi*1*\x)+180)});
					\addplot[red, smooth, domain=4:6, samples=50] plot(\x, {2*cos(deg(2*pi*1*\x)+270)});
					\addplot[red, smooth, domain=6:8, samples=50] plot(\x, {2*cos(deg(2*pi*1*\x)+90)});
					
					\draw[dashed] (axis cs:2,-1.6) -- (axis cs:2,1.2);
					\draw[dashed] (axis cs:4,-1.6) -- (axis cs:4,1.2);
					\draw[dashed] (axis cs:6,-1.6) -- (axis cs:6,1.2);
					\draw[dashed] (axis cs:8,-1.6) -- (axis cs:8,1.2);
					
					\draw (1,-1.5) node{0};
					\draw (3,-1.5) node{2};
					\draw (5,-1.5) node{3};
					\draw (7,-1.5) node{1};
				\end{axis}
			\end{tikzpicture}
		\end{figure}
		
		\task
		Given that the decoder decides to assign the received phasor to the closest symbol, the data would be: $(01)_2 (11)_2 (00)_2 (10)_2$ or as a byte $(10001101)_2$ (the firstly received symbol is aligned to the right).
	\end{tasks}
\end{solution}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{question}[subtitle={Decibel}]
%	\begin{tasks}
%	\end{tasks}
%\end{question}
%
%\begin{solution}
%	\begin{tasks}
%	\end{tasks}
%\end{solution}