1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
|
% SPDX-License-Identifier: CC-BY-SA-4.0
%
% Copyright (c) 2020 Philipp Le
%
% Except where otherwise noted, this work is licensed under a
% Creative Commons Attribution-ShareAlike 4.0 License.
%
% Please find the full copy of the licence at:
% https://creativecommons.org/licenses/by-sa/4.0/legalcode
\phantomsection
\addcontentsline{toc}{section}{Exercise 6}
\section*{Exercise 6}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{question}[subtitle={IIR Filter}]
The following IIR filter is given.
\begin{figure}[H]
\centering
\begin{circuitikz}
\draw[o-] (-1,0) node[left, align=right]{$\underline{x}[n]$} -- (0,0);
\draw (0,-3) node[adder](Add1){};
\draw (2,-3) node[adder](Add2){};
\draw (0,0) to[amp,l=$\underline{b}_0$,>,-] (Add1.north) node[inputarrow,rotate=-90]{};
\draw (0,0) to[short,*-] (2,0) to[twoport,t=$z^{-1}$,>,-] (Add2.north) node[inputarrow,rotate=-90]{};
\draw (Add1.east) to[short] (Add2.west) node[inputarrow,rotate=0]{};
\draw[-latex] (Add2.east) to[short] (4,-3) node[right, align=left]{$\underline{y}[n]$};
\draw (3,-3) to[short,*-] (3,-6) to[twoport,t=$z^{-1}$,>,-] (0,-6) to[amp,l=$\underline{a}_0$,>,-] (Add1.south) node[inputarrow,rotate=90]{};
\end{circuitikz}
\end{figure}
with:
\begin{itemize}
\item $\underline{a}_0 = 0.5$
\item $\underline{b}_0 = 2$
\end{itemize}
\begin{tasks}
\task
Give the differential equation of the filter!
\task
Give the transfer function of the filter!
\task
How much is the filter order?
\task
Is the filter stable?
\task
Plot the amplitude and phase response between $0$ and $\pi$.
\end{tasks}
\end{question}
\begin{solution}
\begin{tasks}
\task
See hand-written solution
\task
See hand-written solution
\task
See hand-written solution
\task
See hand-written solution
\task
\begin{table}[H]
\centering
\begin{tabular}{|r|r|r|}
\hline
$\phi$ in \si{rad} & $\left|\underline{H}\left(e^{j\phi}\right)\right|$ & $\arg\left(\underline{H}\left(e^{j\phi}\right)\right)$ in \si{rad} \\
\hline
\hline
$0$ & $2$ & $0$ \\
\hline
$0.39$ & $2$ & $0$ \\
\hline
$0.79$ & $2$ & $0$ \\
\hline
$1.18$ & $2$ & $0$ \\
\hline
$1.57$ & $2$ & $0$ \\
\hline
$1.96$ & $2$ & $0$ \\
\hline
$2.36$ & $2$ & $0$ \\
\hline
$2.75$ & $2$ & $0$ \\
\hline
\end{tabular}
\end{table}
\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.10\textheight},
width=0.7\linewidth,
scale only axis,
xlabel={$\phi$ in \si{rad}},
ylabel={$\left|\underline{H}\left(e^{j\phi}\right)\right|$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=0,
xmax=3.5,
ymin=0,
ymax=2.2,
xtick={0, 1.5708, 3.14159},
xticklabels={0, $\frac{\pi}{2}$, $\pi\hspace{0.10cm}$},
% ytick={0},
]
\addplot[red] coordinates {(0, 2) (0.39, 2) (0.79, 2) (1.18, 2) (1.57, 2) (1.96, 2) (2.36, 2) (2.75, 2)};
\end{axis}
\end{tikzpicture}
\end{figure}
\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.10\textheight},
width=0.7\linewidth,
scale only axis,
xlabel={$\phi$ in \si{rad}},
ylabel={$\arg\left(\underline{H}\left(e^{j\phi}\right)\right)$ in \si{rad}},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
xmin=0,
xmax=3.5,
ymin=-3.5,
ymax=3.5,
xtick={0, 1.5708, 3.14159},
xticklabels={0, $\frac{\pi}{2}$, $\pi\hspace{0.10cm}$},
ytick={-3.14159, -1.5708, 0, 1.5708, 3.14159},
yticklabels={$\pi\hspace{0.30cm}-$, $-\frac{\pi}{2}$, 0, $\frac{\pi}{2}$, $\pi\hspace{0.10cm}$},
]
\addplot[blue] coordinates {(0, 0) (0.39, 0) (0.79, 0) (1.18, 0) (1.57, 0) (1.96, 0) (2.36, 0) (2.75, 0)};
\end{axis}
\end{tikzpicture}
\end{figure}
\end{tasks}
\end{solution}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{question}[subtitle={FIR Filter}]
An FIR filter with following coefficients is given.
\begin{itemize}
\item $b_0 = 1$.
\item $b_1 = 0.5 + j \cdot 1$.
\item $b_2 = 2$.
\end{itemize}
The sampling rate of the digital system is \SI{2}{MHz}.
\begin{tasks}
\task
Give the block diagram of the filter!
\task
Give the transfer function of the filter!
\task
Give the differential equation of the filter!
\task
How much is the filter order?
\task
Plot the amplitude and phase response between \SI{-1}{MHz} and \SI{1}{MHz}.
\task
Proof mathematically that all poles of the FIR filter are $0$!
\end{tasks}
\end{question}
\begin{solution}
\begin{tasks}
\task
See hand-written solution
\task
See hand-written solution
\task
See hand-written solution
\task
See hand-written solution
\task
\begin{table}[H]
\centering
\begin{tabular}{|r|r|r|}
\hline
$f$ in \si{kHz} & $\left|\underline{H}\left(e^{j\phi}\right)\right|$ & $\arg\left(\underline{H}\left(e^{j\phi}\right)\right)$ in \si{rad} \\
\hline
\hline
$-875$ & $2.66222$ & $-0.940067$ \\
\hline
$-750$ & $2.35077$ & $-1.59632$ \\
\hline
$-625$ & $2.02726$ & $-2.42601$ \\
\hline
$-500$ & $2.06155$ & $2.89661$ \\
\hline
$-375$ & $2.53576$ & $2.0415$ \\
\hline
$-250$ & $3.12827$ & $1.36149$ \\
\hline
$-125$ & $3.54979$ & $0.793366$ \\
\hline
$0$ & $3.64005$ & $0.2783$ \\
\hline
$125$ & $3.33017$ & $-0.20564$ \\
\hline
$250$ & $2.63934$ & $-0.675333$ \\
\hline
$375$ & $1.64624$ & $-1.1316$ \\
\hline
$500$ & $0.5$ & $-1.5708$ \\
\hline
$625$ & $0.653682$ & $1.05924$ \\
\hline
$750$ & $1.64502$ & $0.608236$ \\
\hline
$875$ & $2.34923$ & $0.128051$ \\
\hline
$1000$ & $2.69258$ & $-0.380506$ \\
\hline
\end{tabular}
\end{table}
Amplitude and phase plots will not be symmetric, because one filter coefficient is complex-valued.
\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.10\textheight},
width=0.7\linewidth,
scale only axis,
xlabel={$f$ in \si{Hz}},
ylabel={$\left|\underline{H}\left(e^{j\phi}\right)\right|$},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
% xmin=-3.5,
% xmax=3.5,
ymin=0,
ymax=3.7,
% xtick={0, 1.5708, 3.14159},
% xticklabels={0, $\frac{\pi}{2}$, $\pi\hspace{0.10cm}$},
% ytick={0},
]
\addplot[red] coordinates {(-875000, 2.66222) (-750000, 2.35077) (-625000, 2.02726) (-500000, 2.06155) (-375000, 2.53576) (-250000, 3.12827) (-125000, 3.54979) (0, 3.64005) (125000, 3.33017) (250000, 2.63934) (375000, 1.64624) (500000, 0.5) (625000, 0.653682) (750000, 1.64502) (875000, 2.34923) (1e+06, 2.69258)};
\end{axis}
\end{tikzpicture}
\end{figure}
\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
height={0.10\textheight},
width=0.7\linewidth,
scale only axis,
xlabel={$f$ in \si{Hz}},
ylabel={$\arg\left(\underline{H}\left(e^{j\phi}\right)\right)$ in \si{rad}},
%grid style={line width=.6pt, color=lightgray},
%grid=both,
grid=none,
legend pos=north east,
axis y line=middle,
axis x line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=north,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=east,
},
% xmin=-3.5,
% xmax=3.5,
ymin=-3.5,
ymax=3.5,
% xtick={0, 1.5708, 3.14159},
% xticklabels={0, $\frac{\pi}{2}$, $\pi\hspace{0.10cm}$},
ytick={-3.14159, -1.5708, 0, 1.5708, 3.14159},
yticklabels={$\pi\hspace{0.30cm}-$, $-\frac{\pi}{2}$, 0, $\frac{\pi}{2}$, $\pi\hspace{0.10cm}$},
]
\addplot[blue] coordinates {(-875000, -0.940067) (-750000, -1.59632) (-625000, -2.42601) (-500000, 2.89661) (-375000, 2.0415) (-250000, 1.36149) (-125000, 0.793366) (0, 0.2783) (125000, -0.20564) (250000, -0.675333) (375000, -1.1316) (500000, -1.5708) (625000, 1.05924) (750000, 0.608236) (875000, 0.128051) (1e+06, -0.380506)};
\end{axis}
\end{tikzpicture}
\end{figure}
\task
See hand-written solution
\end{tasks}
\end{solution}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{question}[subtitle={Down-sampling}]
An analogue signal $x(t)$ is digitized (sampled and quantized).
\begin{equation*}
x(t) = \sin\left(2 \pi \cdot \SI{96}{kHz} \cdot t\right)
\end{equation*}
The signal has been sampled by a \SI{8}{bit}-ADC at \SI{7.68}{MHz}.
The signal $x[n]$ is decimated by $N = 40$.
\begin{tasks}
\task
How much is the sampling rate of the decimated signal?
\task
Is the signal suitable to be decimated by $N = 40$? Explain why! What is the criterion?
\task
What is the optimal sampling phase?
\task
Explain the effect on the spectrum caused by down-sampling!
\task
How much is the processing gain? How much is the effective number of bits?
\end{tasks}
\end{question}
\begin{solution}
\begin{tasks}
\end{tasks}
\end{solution}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{question}[subtitle={FFT}]
A series of the samples in the time-domain is given:
\begin{equation*}
x[n] = \left[2, \underline{-0.5}, 1, -2 \right]
\end{equation*}
\begin{remark}
The underline marks the sample at $n = 0$.
\end{remark}
\begin{tasks}
\task
Calculate the DFT for $k = 0, \ldots, 3$!
\task
Draw the butterfly graph of the Cooley-Tuckey FFT algorithm!
\task
Give the primitive roots of unity for each sub-FFT in the butterfly graph!
\task
Calculate the FFT using the Cooley-Tuckey FFT algorithm!
\task
Compare the number of multiply-accumulate operations necessary for both methods in a) and d)!
\task
\textit{(optional programming task)} Implement the FFT algorithm in a programming language of your choice!
\end{tasks}
\end{question}
\begin{solution}
The signal is periodic with $N = 4$. So, it can be re-written as:
\begin{equation*}
x[n] = \left[\underline{-0.5}, 1, -2, 2\right]
\end{equation*}
\begin{tasks}
\task
The formula of the DFT is:
\begin{equation}
\underline{X}[k] = \sum\limits_{n = 0}^{N - 1} \underline{x}[n] \cdot e^{- j \frac{2 \pi}{N} k n}
\end{equation}
where:
\begin{itemize}
\item $N = 4$
\item $\underline{x}[0] = -0.5$
\item $\underline{x}[1] = 1$
\item $\underline{x}[2] = -2$
\item $\underline{x}[3] = \underline{x}[-1] = 2$
\end{itemize}
\begin{equation*}
\begin{split}
\underline{X}[0] &= \underline{x}[0] \cdot e^{-j \frac{\pi}{2} 0 \cdot 0} + \underline{x}[1] \cdot e^{-j \frac{\pi}{2} 0 \cdot 1} + \underline{x}[2] \cdot e^{-j \frac{\pi}{2} 0 \cdot 2} + \underline{x}[3] \cdot e^{-j \frac{\pi}{2} 0 \cdot 3} = 0.5 \\
\underline{X}[1] &= \underline{x}[0] \cdot e^{-j \frac{\pi}{2} 1 \cdot 0} + \underline{x}[1] \cdot e^{-j \frac{\pi}{2} 1 \cdot 1} + \underline{x}[2] \cdot e^{-j \frac{\pi}{2} 1 \cdot 2} + \underline{x}[3] \cdot e^{-j \frac{\pi}{2} 1 \cdot 3} = 1.5+1j \\
\underline{X}[2] &= \underline{x}[0] \cdot e^{-j \frac{\pi}{2} 2 \cdot 0} + \underline{x}[1] \cdot e^{-j \frac{\pi}{2} 2 \cdot 1} + \underline{x}[2] \cdot e^{-j \frac{\pi}{2} 2 \cdot 2} + \underline{x}[3] \cdot e^{-j \frac{\pi}{2} 2 \cdot 3} = -5.5 \\
\underline{X}[3] &= \underline{x}[0] \cdot e^{-j \frac{\pi}{2} 3 \cdot 0} + \underline{x}[1] \cdot e^{-j \frac{\pi}{2} 3 \cdot 1} + \underline{x}[2] \cdot e^{-j \frac{\pi}{2} 3 \cdot 2} + \underline{x}[3] \cdot e^{-j \frac{\pi}{2} 3 \cdot 3} = 1.5-1j
\end{split}
\end{equation*}
\task
\begin{figure}[H]
\centering
\begin{circuitikz}[
x=0.4cm,
y=0.4cm,
littleamp/.style={amp, blocks/scale=0.2}
]
\pgfmathsetmacro{\Xscale}{5}
\pgfmathsetmacro{\Cmargin}{0.15}
\foreach \n/\f/\g in {0/1/3,1/0/2}{
\draw (0,{((2*\n+1)*\Xscale)}) node[left,align=right]{$\underline{x}[\f]$} -- ({10-\Cmargin},{((2*\n+1)*\Xscale)}) node[inputarrow,rotate=0]{};
\node[adder,scale=0.2] at(10,{(\n*2*\Xscale)+(\Xscale)}) {};
\draw (0,{(\n*2*\Xscale)}) node[left,align=right]{$\underline{x}[\g]$} -- (7.5,{(\n*2*\Xscale)}) to[littleamp,l=$\underline{w}_2^{1}$] ({10-\Cmargin},{(\n*2*\Xscale)}) node[inputarrow,rotate=0]{};
\node[adder,scale=0.2] at(10,{(\n*2*\Xscale)}) {};
\draw (5,{(\n*2*\Xscale)+\Xscale}) to[short,*-] ({10-\Cmargin},{(\n*2*\Xscale)+\Cmargin}) node[inputarrow,rotate=-45]{};
\draw (5,{(\n*2*\Xscale)}) to[short,*-] (7.5,{(\n*2*\Xscale)+(\Xscale/2)}) to[littleamp,l=$\underline{w}_2^{0}$] ({10-\Cmargin},{(\n*2*\Xscale)+\Xscale-\Cmargin}) node[inputarrow,rotate=45]{};
}
\foreach \n/\g in {0/3,1/2}{
\draw ({10+\Cmargin},{(\n*\Xscale)+(2*\Xscale)}) -- ({20-\Cmargin},{(\n*\Xscale)+(2*\Xscale)}) node[inputarrow,rotate=0]{};
\node[adder,scale=0.2] at(20,{(\n*\Xscale)+(2*\Xscale)}) {};
\draw ({10+\Cmargin},{(\n*\Xscale)}) -- (17.5,{(\n*\Xscale)}) to[littleamp,l=$\underline{w}_4^{\g}$] ({20-\Cmargin},{(\n*\Xscale)}) node[inputarrow,rotate=0]{};
\node[adder,scale=0.2] at(20,{(\n*\Xscale)}) {};
}
\foreach \n/\g in {0/1,1/0}{
\draw (15,{(2*\Xscale)+(\n*\Xscale)}) node[above,align=center,red]{$\underline{E}[\g]$} to[short,*-] ({20-\Cmargin},{(\n*\Xscale)+\Cmargin}) node[inputarrow,rotate=-60]{};
\draw (15,{(\n*\Xscale)}) node[below,align=center,red]{$\underline{O}[\g]$} to[short,*-] (17.5,{(\Xscale)+(\n*\Xscale)}) to[littleamp,l=$\underline{w}_4^{\g}$] ({20-\Cmargin},{(2*\Xscale)+(\n*\Xscale)-\Cmargin}) node[inputarrow,rotate=60]{};
}
\foreach \f in {0,1,2,3}{
\draw ({20+\Cmargin},{(3-\f)*\Xscale}) -- (25,{(3-\f)*\Xscale}) node[inputarrow,rotate=0]{} node[right,align=left]{$\underline{X}[\f]$};
}
\end{circuitikz}
\end{figure}
The 4-point DFT can divided into two 2-point DFTs and a 4-point combination network (butterfly graph). The 2-point sub-DFTs are itself two 1-point DFTs and a 2-point combination network (butterfly graph). Ordering by even and odd indices must be considered.
\task
The unit circle is equally divided by the primitive roots of unity.
\begin{equation}
\underline{w}_N = e^{- j \frac{2 \pi}{N}}
\end{equation}
$N$ is the number of points of the FFT. $N$ must be a power of $2$, i.e., $1$, $2$, $4$, $8$, $16$, $32$, ..., $512$, $1024$, ...
\begin{itemize}
\item The primitive root of unity of the 2-point DFT ($N = 2$)
\begin{equation*}
\underline{w}_2 = e^{- j \pi}
\end{equation*}
\item The primitive root of unity of the 4-point DFT ($N = 4$)
\begin{equation*}
\underline{w}_4 = e^{- j \frac{\pi}{2}}
\end{equation*}
\end{itemize}
\task
At first, calculate the two 2-point sub-FFTs, called \emph{even} part ($\underline{E}[k]$) and \emph{odd} part ($\underline{O}[k]$).
\begin{equation*}
\begin{split}
\underline{E}[0] &= \underline{x}[0] + \underline{w}_2^{0} \cdot \underline{x}[2] = -2.5 \\
\underline{E}[1] &= \underline{x}[0] + \underline{w}_2^{1} \cdot \underline{x}[2] = 1.5 \\
\underline{O}[0] &= \underline{x}[1] + \underline{w}_2^{0} \cdot \underline{x}[3] = 3.0 \\
\underline{O}[1] &= \underline{x}[1] + \underline{w}_2^{1} \cdot \underline{x}[3] = -1.0
\end{split}
\end{equation*}
Note that both $\underline{E}[k]$ and $\underline{O}[k]$ are 2-periodic, i.e., $\underline{E}[2] = \underline{E}[0]$, ...
Now combine the two parts, to the 4-point FFT.
\begin{equation*}
\begin{split}
\underline{X}[0] &= \underline{E}[0] + \underline{w}_2^{0} \cdot \underline{O}[0] = 0.5 \\
\underline{X}[1] &= \underline{E}[1] + \underline{w}_2^{1} \cdot \underline{O}[1] = 1.5+1j \\
\underline{X}[2] &= \underline{E}[0] + \underline{w}_2^{2} \cdot \underline{O}[0] = -5.5 \\
\underline{X}[3] &= \underline{E}[1] + \underline{w}_2^{3} \cdot \underline{O}[1] = (1.5-1j)
\end{split}
\end{equation*}
The result is the same like in a).
\task
\begin{itemize}
\item a) and d) gave the same results. They both calculate the DFT.
\item a) required 16 multiplications.
\item d) required only 8 multiplications.
\item Multiplications require many computational resources. d) will perform better, because it requires fewer multiplications.
\end{itemize}
\end{tasks}
\end{solution}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{question}[subtitle={Decibel}]
% \begin{tasks}
% \end{tasks}
%\end{question}
%
%\begin{solution}
% \begin{tasks}
% \end{tasks}
%\end{solution}
|