summaryrefslogtreecommitdiff
path: root/exercise09/exercise09.tex
blob: 0ed749e6995ef4a245da6d64beac3c2c94dd80c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
% SPDX-License-Identifier: CC-BY-SA-4.0
%
% Copyright (c) 2022 Philipp Le
%
% Except where otherwise noted, this work is licensed under a
% Creative Commons Attribution-ShareAlike 4.0 License.
%
% Please find the full copy of the licence at:
% https://creativecommons.org/licenses/by-sa/4.0/legalcode

\phantomsection
\addcontentsline{toc}{section}{Exercise 9}
\section*{Exercise 9}


% Free Space Path Loss

% Link Budget (Easy)

% Link Budget (Complex)
% Cable Attenuation
% Antenna Gain




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{question}[subtitle={Free Space Path Loss}]
	Calculate the free-space path loss!
	
	Hint:
	\begin{equation*}
		L_a = \SI{32.4}{dB} + \SI{20}{dB} \cdot \log_{10}\left(\frac{d}{\SI{1}{km}}\right) + \SI{20}{dB} \cdot \log_{10}\left(\frac{f}{\SI{1}{MHz}}\right)
	\end{equation*}
	where $d$ is the distance from the transmitter to receiver and $f$ is the transmission frequency.
	
	\begin{tasks}
		\task
		$d = \SI{1}{km}$; $f = \SI{1}{MHz}$
		\task
		FM radio broadcasting: $d = \SI{100}{km}$; $f = \SI{100}{MHz}$
		\task
		LTE: $d = \SI{40}{km}$; $f = \SI{800}{MHz}$
		\task
		WiFi: $d = \SI{100}{m}$; $f = \SI{2.4}{GHz}$
		\task
		TV Satellite Link: $d = \SI{42164}{km}$; $f = \SI{10.964}{GHz}$
		\task
		A WiFi link at $f = \SI{2400}{MHz}$ is allowed to have a maximum propagation loss of $L_{a,max} = \SI{87}{dB}$. What is the maximum distance between transmitter and receiver?
	\end{tasks}
\end{question}

\begin{solution}
	\begin{tasks}
		\task
		\begin{equation*}
			\begin{split}
				L_a &= \SI{32.4}{dB} + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{1}{km}}{\SI{1}{km}}\right) + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{1}{MHz}}{\SI{1}{MHz}}\right) \\
				 &= \SI{32.4}{dB}
			\end{split}
		\end{equation*}
		
		\task
		\begin{equation*}
			\begin{split}
				L_a &= \SI{32.4}{dB} + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{100}{km}}{\SI{1}{km}}\right) + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{100}{MHz}}{\SI{1}{MHz}}\right) \\
				 &= \SI{112.4}{dB}
			\end{split}
		\end{equation*}
		
		FM broadcasting stations transmit at high powers of several \si{kW} (\SI{60}{dBm} to \SI{80}{dBm}). So the power level at the receivers is still high enough for proper demodulation.
		
		\task
		\begin{equation*}
			\begin{split}
				L_a &= \SI{32.4}{dB} + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{40}{km}}{\SI{1}{km}}\right) + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{800}{MHz}}{\SI{1}{MHz}}\right) \\
				 &= \SI{122.5}{dB}
			\end{split}
		\end{equation*}
		
		\task
		\begin{equation*}
			\begin{split}
				L_a &= \SI{32.4}{dB} + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{100}{m}}{\SI{1}{km}}\right) + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{2.4}{GHz}}{\SI{1}{MHz}}\right) \\
				 &= \SI{32.4}{dB} + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{100}{m}}{\SI{1000}{m}}\right) + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{2400}{MHz}}{\SI{1}{MHz}}\right) \\
				 &= \SI{80}{dB}
			\end{split}
		\end{equation*}
		
		\task
		\begin{equation*}
			\begin{split}
				L_a &= \SI{32.4}{dB} + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{42164}{km}}{\SI{1}{km}}\right) + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{10.964}{GHz}}{\SI{1}{MHz}}\right) \\
				 &= \SI{32.4}{dB} + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{42164}{km}}{\SI{1}{km}}\right) + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{10964}{MHz}}{\SI{1}{MHz}}\right) \\
				 &= \SI{205.7}{dB}
			\end{split}
		\end{equation*}
		The propagation loss of a satellite link is very high. Therefore, receivers use large dishes with gains up to \SI{40}{dB} to compensate the propagation loss.
		
		\task
		\begin{equation*}
			\begin{split}
				L_{a,max} &= \SI{32.4}{dB} + \SI{20}{dB} \cdot \log_{10}\left(\frac{d_{max}}{\SI{1}{km}}\right) + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{2400}{MHz}}{\SI{1}{MHz}}\right) \\
				- \SI{20}{dB} \cdot \log_{10}\left(\frac{d_{max}}{\SI{1}{km}}\right) &= - L_{a,max} + \SI{32.4}{dB} + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{2400}{MHz}}{\SI{1}{MHz}}\right) \\
				\SI{20}{dB} \cdot \log_{10}\left(\frac{d_{max}}{\SI{1}{km}}\right) &= L_{a,max} - \SI{32.4}{dB} - \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{2400}{MHz}}{\SI{1}{MHz}}\right) \\
				\log_{10}\left(\frac{d_{max}}{\SI{1}{km}}\right) &= \frac{L_{a,max} - \SI{32.4}{dB} - \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{2400}{MHz}}{\SI{1}{MHz}}\right)}{\SI{20}{dB}} \\
				\frac{d_{max}}{\SI{1}{km}} &= 10^{\frac{L_{a,max} - \SI{32.4}{dB} - \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{2400}{MHz}}{\SI{1}{MHz}}\right)}{\SI{20}{dB}}} \\
				d_{max} &= \SI{1}{km} \cdot 10^{\frac{L_{a,max} - \SI{32.4}{dB} - \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{2400}{MHz}}{\SI{1}{MHz}}\right)}{\SI{20}{dB}}} \\
				d_{max} &= \SI{0.2238}{km} \\
				d_{max} &= \SI{223.8}{m}
			\end{split}
		\end{equation*}
		
		WiFi routers are sold with the promise that they will cover an area several hundred meters around them. However, you know that this promise is never fulfilled indoors. The point is that indoor usage is no free-space propagation loss. The operating distance is much lower. However, the advertisement numbers are measured with free-space propagation loss which will never be achieved for real usage conditions.
	\end{tasks}
\end{solution}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{question}[subtitle={Antenna Gain}]
	The output port of a receiver delivers a power of \SI{1}{W} (peak emitted power - PEP). Calculate the effective isotropic radiated power (EIRP)! Cable losses are neglected.
	
	\begin{tasks}
		\task
		Antenna gain $L_G = \SI{3}{dBi}$
		\task
		Antenna gain $L_G = \SI{40}{dBi}$
		\task
		Antenna gain $L_G = \SI{-3}{dBi}$
	\end{tasks}
\end{question}

\begin{solution}
	For easier calculation, transform the power to a logarithmic power level: $\SI{1}{W} \equiv \SI{30}{dBm}$
	
	\begin{tasks}
		\task
		\begin{equation*}
			\begin{split}
				L_P &= \SI{30}{dBm} + \SI{3}{dBi} \\
				 &= \SI{33}{dBm} \\
				P &= \SI{2}{W}
			\end{split}
		\end{equation*}
		
		\task
		\begin{equation*}
			\begin{split}
				L_P &= \SI{30}{dBm} + \SI{40}{dBi} \\
				&= \SI{70}{dBm} \\
				P &= \SI{10}{kW}
			\end{split}
		\end{equation*}
		
		
		\task
		\begin{equation*}
			\begin{split}
				L_P &= \SI{30}{dBm} - \SI{3}{dBi} \\
				&= \SI{27}{dBm} \\
				P &= \SI{500}{mW}
			\end{split}
		\end{equation*}
	\end{tasks}
\end{solution}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{question}[subtitle={Link Budget}]
	A transmitter has the following parameters:
	\begin{itemize}
		\item Peak emitted power (PEP): \SI{0.5}{mW}
		\item Transmission frequency: \SI{2400}{MHz}
		\item Cable length: \SI{2}{m}
		\item Cable attenuation per length: \SI{1}{dB/m}
		\item Antenna gain: \SI{8}{dBi}
	\end{itemize}

	A transmitter has the following parameters:
	\begin{itemize}
		\item Reception frequency: \SI{2400}{MHz}
		\item Cable length: \SI{10}{cm}
		\item Cable attenuation per length: \SI{5}{dB/m}
		\item Antenna gain: \SI{2}{dBi}
	\end{itemize}

	The transmission uses a $(63,55)$ error correction code for channel coding. So it can tolerate a bit error rate (BER) of \SI{6.3}{\percent} (maximum 4 bit errors in the 63 bit word). To maintain a constant BER at maximum data rate, the communication system uses an adaptive data rate (ADR) with the following configuration:
	\begin{table}[H]
		\centering
		\begin{tabular}{|l|l|l|l|}
			\hline
			Modulation & Spreading Factor (DSSS) & Gross Data Rate & Receiver Sensitivity \\
			\hline
			BPSK & 8 & \SI{20}{kbit/s} & \SI{-92}{dBm} \\
			\hline
			BPSK & 4 & \SI{40}{kbit/s} & \SI{-89}{dBm} \\
			\hline
			QPSK & 4 & \SI{80}{kbit/s} & \SI{-86}{dBm} \\
			\hline
			QPSK & 2 & \SI{160}{kbit/s} & \SI{-83}{dBm} \\
			\hline
			QPSK & 1 & \SI{320}{kbit/s} & \SI{-80}{dBm} \\
			\hline
		\end{tabular}
	\end{table}
	The receiver sensitivity is the minimum required power at the receiver input port (behind antenna and cable).

	The distance between the receiver and transmitter is \SI{500}{m}. Assume free-space path loss!
	
	\begin{tasks}
		\task
		Draw a block diagram of the communication system!
		
		\task
		Calculate the effective isotropic radiated power (EIRP) at the transmitter antenna!
		
		\task
		Calculate the power at the receiver antenna!
		
		\task
		Calculate the power at the receiver input port, i.e. the power behind antenna and cable!
		
		\task
		Which data rate can be achieved with the given configuration?
		
		\task
		How much is the link margin?
		
		\task
		What can be done to increase the data rate to \SI{160}{kbit/s}? What is the required link budget?
	\end{tasks}
\end{question}

\begin{solution}
	\begin{tasks}
		\task
		\begin{figure}[H]
			\centering
			\begin{adjustbox}{scale=0.4}
				\begin{circuitikz}
					\node[block, draw, minimum height=3cm](TX){Transmitter\\ $PEP = \SI{0.5}{mW}$};
					\node[block, draw, minimum height=3cm, right=1cm of TX](TXcable){Cable Loss\\ \SI{2}{m} at \SI{1}{dB/m}};
					\node[block, draw, minimum height=3cm, right=1cm of TXcable](TXant){Antenna Gain\\ \SI{8}{dBi}};
					\node[block, draw, minimum height=3cm, right=3cm of TXant](Ch){Transmission Channel\\ \SI{500}{m}\\ with free-space path loss};
					\node[block, draw, minimum height=3cm, right=3cm of Ch](RXant){Antenna Gain\\ \SI{2}{dBi}};
					\node[block, draw, minimum height=3cm, right=1cm of RXant](RXcable){Cable Loss\\ \SI{10}{cm} at \SI{5}{dB/m}};
					\node[block, draw, minimum height=3cm, right=1cm of RXcable](RX){Receiver};
					
					\draw (TX.east) -- (TXcable.west) node[inputarrow,rotate=0]{};
					\draw (TXcable.east) -- (TXant.west) node[inputarrow,rotate=0]{};
					\draw (TXant.east) -- (Ch.west) node[inputarrow,rotate=0]{};
					\draw (Ch.east) -- (RXant.west) node[inputarrow,rotate=0]{};
					\draw (RXant.east) -- (RXcable.west) node[inputarrow,rotate=0]{};
					\draw (RXcable.east) -- (RX.west) node[inputarrow,rotate=0]{};
					
					\draw[decorate, decoration={brace, amplitude=3mm, mirror}] ([yshift=-5mm]TX.south west) -- ([yshift=-5mm]TXant.south east) node[midway, anchor=north, yshift=-5mm, align=center]{Transmitter subsystem};
					\draw[decorate, decoration={brace, amplitude=3mm, mirror}] ([yshift=-5mm]RXant.south west) -- ([yshift=-5mm]RX.south east) node[midway, anchor=north, yshift=-5mm, align=center]{Receiver subsystem};
				\end{circuitikz}
			\end{adjustbox}
		\end{figure}
	
		Note: The communication system comprises transmitter, receiver and the transmission channel.
		
		\task
		The cable loss of the transmitter is:
		\begin{equation*}
			\begin{split}
				L_{C,TX} &= \SI{2}{m} \cdot \SI{1}{dB/m} \\
				 &= \SI{2}{dB}
			\end{split}
		\end{equation*}
	
		The antenna gain is $L_{G,TX} = \SI{8}{dBi}$.
	
		The PEP is: $P_{PEP} = \SI{0.5}{mW} \equiv L_{PEP} = \SI{-3}{dBm}$
		
		The EIRP is:
		\begin{equation*}
			\begin{split}
				L_{EIRP} &= L_{PEP} \underbrace{- L_{C,TX}}_{\text{Subtraction because it is a loss}} \underbrace{+ L_{G,TX}}_{\text{Addition because it is a gain}} \\
				 &= \SI{-3}{dBm} - \SI{2}{dB} + \SI{8}{dBi} \\
				 &= \SI{4}{dBm}
			\end{split}
		\end{equation*}
		
		\task
		The free-space path loss is
		\begin{equation*}
			\begin{split}
				L_a &= \SI{32.4}{dB} + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{0.5}{km}}{\SI{1}{km}}\right) + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{2400}{MHz}}{\SI{1}{MHz}}\right) \\
				&= \SI{94}{dB}
			\end{split}
		\end{equation*}
	
	
		The power at the receiver antenna is:
		\begin{equation*}
			\begin{split}
				L_{P,RX,Ant} &= L_{EIRP} \underbrace{- L_{a}}_{\text{Subtraction because it is a loss}} \\
				 &= \SI{4}{dBm} - \SI{94}{dB}\\
				 &= \SI{-90}{dBm}
			\end{split}
		\end{equation*}
	
		\task
		The cable loss of the receiver is:
		\begin{equation*}
			\begin{split}
				L_{C,RX} &= \SI{10}{cm} \cdot \SI{5}{dB/m} \\
				 &= \SI{0.1}{m} \cdot \SI{5}{dB/m} \\
				 &= \SI{0.5}{dB}
			\end{split}
		\end{equation*}
	
		The antenna gain is $L_{G,RX} = \SI{2}{dBi}$.
		
		The power at the receiver input port is:
		\begin{equation*}
			\begin{split}
				L_{P,RX} &= L_{P,RX,Ant} \underbrace{- L_{C,RX}}_{\text{Subtraction because it is a loss}} \underbrace{+ L_{G,RX}}_{\text{Addition because it is a gain}} \\
				 &= \SI{-90}{dBm} - \SI{0.5}{dB} + \SI{2}{dBi} \\
				 &= \SI{-88.5}{dBm}
			\end{split}
		\end{equation*}
	
		\task
		The communication system operates at \textbf{\SI{40}{kbit/s}} with BPSK and a spreading factor of \num{4} ($\SI{-88.5}{dBm} \geq \SI{-89}{dBm}$).
		
		\task
		The minimum required signal power level (sensitivity) is \SI{-89}{dBm}. The difference to the actual received power level is the link margin:
		\begin{equation*}
			\begin{split}
				\SI{-88.5}{dBm} - \SI{-89}{dBm} = \SI{0.5}{dB}
			\end{split}
		\end{equation*}
		
		\task
		The total gain of the communication system accumulates all losses and gains:
		\begin{equation*}
			\begin{split}
				L_{G,total} &= - L_{C,TX} + L_{G,TX} + L_{G,RX} - L_{C,RX} \\
				&= - \SI{2}{dB} + \SI{8}{dBi} + \SI{2}{dBi} - \SI{0.5}{dB} \\
				&= \SI{7.5}{dB}
			\end{split}
		\end{equation*}
		
		For a data rate of \SI{160}{kbit/s}, a reception power level of $L_{P,RX,min} = \SI{-83}{dBm}$ is required.
		
		The required link budget is the maximum allowed propagation loss:
		\begin{equation*}
			\begin{split}
				L_{a,max} &= P_{PEP} - L_{P,RX,min} + L_{G,total} \\
				&= \SI{-3}{dBm} - \SI{-83}{dBm} + \SI{7.5}{dB} \\
				&= \SI{87.5}{dB}
			\end{split}
		\end{equation*}
	
		Assuming free-space propagation loss, the maximum distance between transmitter and receiver must be reduced to:
		\begin{equation*}
			\begin{split}
				L_{a,max} &= \SI{32.4}{dB} + \SI{20}{dB} \cdot \log_{10}\left(\frac{d_{max}}{\SI{1}{km}}\right) + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{2400}{MHz}}{\SI{1}{MHz}}\right) \\
				- \SI{20}{dB} \cdot \log_{10}\left(\frac{d_{max}}{\SI{1}{km}}\right) &= - L_{a,max} + \SI{32.4}{dB} + \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{2400}{MHz}}{\SI{1}{MHz}}\right) \\
				\SI{20}{dB} \cdot \log_{10}\left(\frac{d_{max}}{\SI{1}{km}}\right) &= L_{a,max} - \SI{32.4}{dB} - \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{2400}{MHz}}{\SI{1}{MHz}}\right) \\
				\log_{10}\left(\frac{d_{max}}{\SI{1}{km}}\right) &= \frac{L_{a,max} - \SI{32.4}{dB} - \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{2400}{MHz}}{\SI{1}{MHz}}\right)}{\SI{20}{dB}} \\
				\frac{d_{max}}{\SI{1}{km}} &= 10^{\frac{L_{a,max} - \SI{32.4}{dB} - \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{2400}{MHz}}{\SI{1}{MHz}}\right)}{\SI{20}{dB}}} \\
				d_{max} &= \SI{1}{km} \cdot 10^{\frac{L_{a,max} - \SI{32.4}{dB} - \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{2400}{MHz}}{\SI{1}{MHz}}\right)}{\SI{20}{dB}}} \\
				d_{max} &= \SI{1}{km} \cdot 10^{\frac{\SI{87.5}{dB} - \SI{32.4}{dB} - \SI{20}{dB} \cdot \log_{10}\left(\frac{\SI{2400}{MHz}}{\SI{1}{MHz}}\right)}{\SI{20}{dB}}} \\
				d_{max} &= \SI{0.237}{km} \\
				d_{max} &= \SI{237}{m}
			\end{split}
		\end{equation*}
	\end{tasks}
\end{solution}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{question}[subtitle={DS-CDMA}]
%	\begin{tasks}
%		\task
%	
%	\end{tasks}
%\end{question}
%
%\begin{solution}
%	\begin{tasks}
%		\task
%	
%	\end{tasks}
%\end{solution}