summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPhilipp Le <philipp-le-prviat@freenet.de>2020-06-04 01:22:08 +0200
committerPhilipp Le <philipp-le-prviat@freenet.de>2021-03-04 22:44:39 +0100
commitb1a22abfe12b001c1832911da178be87684f62d4 (patch)
tree57e01b1f8a23fcdff566b3b143b5bc93312bbe35
parentaa59a1524602822149d15e36f6d625d8ddc6d09f (diff)
downloaddcs-lecture-notes-b1a22abfe12b001c1832911da178be87684f62d4.zip
dcs-lecture-notes-b1a22abfe12b001c1832911da178be87684f62d4.tar.gz
dcs-lecture-notes-b1a22abfe12b001c1832911da178be87684f62d4.tar.bz2
WIP Chapter 5: Complex Mixing
-rw-r--r--chapter05/content_ch05.tex717
-rw-r--r--common/acronym.tex2
2 files changed, 714 insertions, 5 deletions
diff --git a/chapter05/content_ch05.tex b/chapter05/content_ch05.tex
index 9350d57..3579757 100644
--- a/chapter05/content_ch05.tex
+++ b/chapter05/content_ch05.tex
@@ -650,6 +650,7 @@ The information-carrying signal and the carrier are usually at different frequen
}
\caption{A selection of heterodyne architectures}
+ \label{fig:ch05:trx_if_arch}
\end{figure}
Definitions:
@@ -875,19 +876,723 @@ So, the input signal's spectrum consists of a positive and a negative part:
\subsection{Technical Realization of Mixers}
-\todo{Non-linear component}
+\begin{figure}[H]
+ \centering
+ \begin{adjustbox}{scale=1}
+ \begin{circuitikz}
+ \node[adder](Adder){};
+ \node[block,draw,right=of Adder](NonLin){Non-linear\\ component};
+ \node[oscillator,below=of Adder](LO){};
+
+ \draw (LO.south) node[below,align=center,yshift=-5mm]{\acs{LO}};
+
+ \draw[latex-o] (Adder.west) -- ++(-2cm,0) node[left,align=right]{Input\\ signal $x_i(t)$};
+ \draw[-latex] (Adder.east) -- (NonLin.west);
+ \draw[-latex] (NonLin.east) -- ++(2cm,0) node[right,align=left]{Output\\ signal $x_o(t)$};
+ \draw[-latex] (LO.north) -- node[midway,right,align=left]{$u_{LO}(t)$} (Mix.south);
+ \draw[latex-o] (Adder.north) -- (0,1.5cm) node[above,align=center]{\acs{DC} bias\\ (optional)};
+ \end{circuitikz}
+ \end{adjustbox}
+ \caption[Basic principle of a mixer]{Basic principle of a mixer. The input signals and optionally a \acs{DC} bias are combined. A non-linearity implements the mixing process.}
+\end{figure}
+
+\begin{figure}[H]
+ \centering
+ \begin{adjustbox}{scale=1}
+ \begin{circuitikz}
+ \draw (0,2) node[left,align=right]{Input\\ signal} to[short,o-] (1,2) to[R,l=$R$] (3,2);
+ \draw (0,0) node[left,align=right]{\acs{LO}\\ signal} to[short,o-] (1,0) to[R,l=$R$] (3,0) to[short,-*] (3,2);
+ \draw (3,2) to[R,l=$R$] (5,2) to[C,l=$C$] (7,2) to[empty diode] (9,2) to[short,-o] (10,2) node[right,align=left]{Output\\ signal};
+ \draw (7,4) node[above,align=center]{\acs{DC} bias} to[L,l=$L$,o-*] (7,2);
+
+ \draw[dashed] (1,3) -- (5,3) -- (5,-1) -- (1,-1) node[below right,align=left]{Power combiner} -- cycle;
+ \end{circuitikz}
+ \end{adjustbox}
+ \caption[Passive unbalanced mixer]{Passive unbalanced mixer. The input signals are added. Then a \acs{DC} bias is injected. The diode is the non-linearity where the mixing happens. The carrier is not suppressed.}
+ \label{fig:ch05:pass_unbal_mixer}
+\end{figure}
-\todo{IP3}
+\begin{figure}[H]
+ \centering
+ \begin{adjustbox}{scale=0.8}
+ \begin{circuitikz}
+ % current source
+ \draw(0,0) to[I=$2 I_T$,*-] ++(0,-2)
+ node[rground]{};
+
+ % driver stage
+ \draw(-3,1) node[npn](Q5){} node[right]{Q5};
+ \draw(3,1) node[npn,xscale=-1](Q6){} node[left]{Q6};
+ \draw(0,0) to[R,l^=$Z_e$] ++(-3,0)
+ |- (Q5.E);
+ \draw(0,0) to[R,l_=$Z_e$] ++(3,0)
+ |- (Q6.E);
+ \draw(Q5.B) to[short,-o] ++(-1,0)
+ node[left]{Differential input (+)};
+ \draw(Q6.B) to[short,-o] ++(1,0)
+ node[right]{Differential input (-)};
+
+ % switching quad
+ \draw(Q5) ++(-1,1.5) node[npn](Q7){} node[right]{Q7};
+ \draw(Q5) ++(1,1.5) node[npn,xscale=-1](Q8){} node[left]{Q8};
+ \draw(Q6) ++(-1,1.5) node[npn](Q9){} node[right]{Q9};
+ \draw(Q6) ++(1,1.5) node[npn,xscale=-1](Q10){} node[left]{Q10};
+ \draw(Q5.C) to[short,*-] ++(-1,0)
+ |- (Q7.E);
+ \draw(Q5.C) to[short] ++(1,0)
+ |- (Q8.E);
+ \draw(Q6.C) to[short,*-] ++(-1,0)
+ |- (Q9.E);
+ \draw(Q6.C) to[short] ++(1,0)
+ |- (Q10.E);
+ \draw(Q7.B) to[short,-o] ++(-1,0)
+ node[left]{Differential \acs{LO} (-)};
+ \draw(Q10.B) to[short,-o] ++(1,0)
+ node[right]{Differential \acs{LO} (-)};
+ \draw(Q8.B) to[short] (Q9.B);
+ \draw(0,|-Q8.B) to[short,*-o] ++(0,-0.5)
+ node[below]{Differential \acs{LO} (+)};
+ \draw(Q7.C) to[short] ++(0,0.5)
+ to[R,l_=$R$] ++(0,2)
+ node[vcc]{};
+ \draw(Q9.C) to[short] (Q7.C)
+ to[short,*-o] ++(-2,0)
+ node[left]{Differential output (-)};
+ \draw(Q10.C) to[short] ++(0,0.5) node(AboveQ10){}
+ to[R,l_=$R$] ++(0,2)
+ node[vcc]{};
+ \draw(Q8.C) to[short] ++(0,0.5)
+ to[short] (AboveQ10)
+ to[short,*-o] ++(2,0)
+ node[right]{Differential output (+)};
+ \end{circuitikz}
+ \end{adjustbox}
+ \caption[Active double-balanced mixer with differential inputs and output]{Active double-balanced mixer with differential inputs and output. The switching stages (balanced transistor pairs) implement the non-linearity. The balanced switching mode suppresses the carrier.}
+\end{figure}
+
+The core component of a mixer is a non-linear device.
+
+Figure \ref{fig:ch05:pass_unbal_mixer} depicts a simple mixer with a diode as the non-linear device. The characteristic curve of a diode is an exponential function -- the \emph{Schockley diode equation}.
+\begin{equation}
+ I = I_S \left(e^{\frac{V_D}{n V_T}} - 1\right)
+\end{equation}
+The equation describes the relation of the diode current $I$ and its forward voltage $V_D$. The equation is non-linear.
+
+A mathematical model is depicted in Figure \ref{fig:ch05:math_model_mixer}.
+\begin{figure}
+ \centering
+ \begin{circuitikz}
+ \draw(0,0) node[mixer](Mix){};
+ \draw(-3,|-Mix) node[adder](Add){};
+ \draw(Mix.4) node[above]{$M(x)$};
+ \draw(Add.3) -- (Mix.1) node[inputarrow]{};
+ \draw(Add.1) +(-1,0) node[above]{$x_{i}$} -- (Add.1) node[inputarrow]{};
+ \draw(Add.4) +(0,1) node[right]{$a$} -- (Add.4) node[inputarrow,rotate=-90]{};
+ \draw(Add.2) +(0,-1) node[right]{$x_{LO}$} -- (Add.2) node[inputarrow,rotate=90]{};
+ \draw(Mix.3) -- +(1,0) node[inputarrow]{$x_{o}$};
+ \end{circuitikz}
+ \caption[Mathematical model of the mixer]{Mathematical model of the mixer with a signal combiner ($x_{i} + x_{LO} + a$) and a non-linear device with the characteristic $M(x)$. $x_{i}$ is the input, $x_{LO}$ is the \acs{LO}, $x_{o}$ is the output and $a$ is the \acs{DC} bias defining the operating point.}
+ \label{fig:ch05:math_model_mixer}
+\end{figure}
+
+The non-linearity $M(x)$ of the diode or any other non-linear devices can be expressed as a \emph{Taylor series}. The Taylor series is developed around a operating point of non-linear device which is defined by the bias $a$.
+\begin{equation}
+ \begin{split}
+ x_{o} &= M(x_{i} + x_{LO} + a) = \sum\limits_{n=0}^{\infty} \frac{1}{n!} \left.\frac{\mathrm{d}^n M(x)}{\mathrm{d} x^n}\right|_{x=a} \left(x_{i} + x_{LO} + a - a\right)^n \\
+ &= M(a) + \underbrace{M^{(1)}(a) \left(x_{i} + x_{LO}\right)}_{\text{Linear term}} + \underbrace{\frac{M^{(2)}(a)}{2} \left(x_{i} + x_{LO}\right)^2}_{\text{Quadratic term}} + \underbrace{\frac{M^{(3)}(a)}{6} \left(x_{i} + x_{LO}\right)^2}_{\text{Qubic term}} + \dots
+ \end{split}
+\end{equation}
+
+\begin{itemize}
+ \item The \underline{linear term} is used in electronics for the small signal analysis of a circuit.
+ \item Mixers are driven with relatively strong signals. Therefore, the \underline{quadratic term} comes into play.
+ \item The contribution of high-order polynomials decreases with their order due to the coefficient $\frac{1}{n!}$. Because of that, polynomials of order three or higher are neglected.
+\end{itemize}
+
+The quadratic term is the important part in the mixing process.
+\begin{equation}
+ \left(x_{i} + x_{LO}\right)^2 = x_{i}^2 + 2 \underbrace{x_{i} x_{LO}}_{\text{Mixing}} + x_{LO}^2
+\end{equation}
+
+The quadratic term devolves, amongst others, into a multiplication of the input signals. This is where the mixing process happens.
+
+\begin{excursus}{Spurious components in the output signal}
+ The equation
+ \begin{equation*}
+ \left(x_{i} + x_{LO}\right)^2 = x_{i}^2 + 2 x_{i} x_{LO} + x_{LO}^2
+ \end{equation*}
+ points out that there are more signals than the desired signals.
+ \begin{itemize}
+ \item The term $x_{i} x_{LO}$ yields the desired components in the output signal.
+ \begin{itemize}
+ \item A signal at a frequency of $\omega_i - \omega_{LO}$
+ \item Another signal at the mirror frequency of $\omega_i + \omega_{LO}$
+ \end{itemize}
+ \item The two other terms produce spurious signals
+ \begin{itemize}
+ \item at the double frequency of the \ac{LO} $2 \omega_{LO}$ and
+ \item at the double frequency of the input $2 \omega_{i}$.
+ \end{itemize}
+ \end{itemize}
+\end{excursus}
+
+The spurious signals distort the output signal, decrease the \ac{SNR} and are therefore unwanted. \textbf{The output of the mixer must always be filtered, to remove spurious components.}
+
+\begin{excursus}{Intermodulation}
+ Other spurious signals are created by higher order polynomials.
+ \begin{itemize}
+ \item For weak inputs, their contribution is low (due to the coefficient $\frac{1}{n!}$) and can be neglected.
+ \item If the input signal is strong enough, polynomials of orders higher than 2 cannot be neglected any longer and must be considered as well.
+ \item Especially, the 3rd order polynomial comes into effect firstly. It amongst others contributes the following output frequencies:
+ \begin{itemize}
+ \item $2 \omega_a - \omega_b$
+ \item $2 \omega_b - \omega_a$
+ \end{itemize}
+ \item Example:
+ \begin{itemize}
+ \item The \ac{LO} is \SI{100}{MHz}. The \ac{RF} signal at \SI{110}{MHz} shall be mixed down to \SI{10}{MHz}.
+ \item There are two more very strong, disturbing signals -- so called \emph{blockers} -- at \SI{107}{MHz} and \SI{104}{MHz}.
+ \item These very strong blockers mix to: $2 \cdot \SI{107}{MHz} - \SI{104}{MHz} = \SI{110}{MHz}$.
+ \item The mixer product of the blockers disturbs the input signal and decreases its \ac{SNR}.
+ \item This effect is called \index{intermodulation} \textbf{intermodulation}.
+ \end{itemize}
+ \end{itemize}
+
+ We will not bother with the theory behind this. However, the consequences are:
+ \begin{itemize}
+ \item The mixer input should be filtered to eliminate out-of-band disturbances.
+ \item The input signal power must not exceed a certain limit. This characteristic is given in mixer datasheets as the \index{interception point} \textbf{interception point of the 3rd order (IP3)}.
+ \item Too strong signals will cause intermodulation.
+ \end{itemize}
+\end{excursus}
\subsection{Zero-Intermediate-Frequency}
-\todo{coherency}
+Figure \ref{fig:ch05:trx_if_arch} considers different receiver architectures with a variation in \acf{IF} stages.
+\begin{itemize}
+ \item Superheterodyne receivers allow the implementation of high quality filter to archive a good selectivity.
+ \item However, the cost of the implementation increases with an increasing number of \ac{IF} stages.
+ \item A common implementation in modern digital communication systems is omitting the \ac{IF} stages can convert directly from \ac{RF} to the baseband.
+ \item The filtering is accomplished in the digital signal processing chain.
+\end{itemize}
+
+\begin{figure}[H]
+ \centering
+ \begin{adjustbox}{scale=0.8}
+ \begin{circuitikz}
+ \node[ampshape](RFAmplifier){};
+ \node[mixer, right=2cm of RFAmplifier](Mixer){};
+ \node[oscillator, below=1cm of Mixer](LO){};
+ \node[ampshape, right=2.5cm of Mixer](BBAmplifier){};
+ \node[adcshape, right=2.5cm of BBAmplifier](ADC){};
+ \node[block, draw, right=1cm of ADC](Baseband){Digital signal\\ processing};
+
+ \draw (LO.south) node[below,align=center,yshift=-5mm]{\acs{LO}};
+ \draw (RFAmplifier.south) node[below,align=center,yshift=-5mm]{\acs{RF}\\ amplifier};
+ \draw (Mixer.north) node[above,align=center,yshift=3mm]{Mixer};
+ \draw (BBAmplifier.south) node[below,align=center,yshift=-5mm]{Baseband\\ amplifier};
+ \draw (ADC.south) node[below,align=center,yshift=-5mm]{\acs{ADC}};
+
+ \draw (RFAmplifier.west) to[bandpass] ++(-2cm,0) node[rxantenna,xscale=-1]{};
+
+ \draw[-latex] (LO.north) -- (Mixer.south);
+ \draw[-latex] (RFAmplifier.east) -- node[midway,above,align=center]{\acs{RF}\\ signal} (Mixer.west);
+ \draw[-latex] (Mixer.east) to[lowpass] ++(2cm,0) -- (BBAmplifier.west);
+ \draw[-latex] (BBAmplifier.east) -- node[midway,above,align=center]{Baseband\\ signal} (ADC.west);
+ \draw[-latex] (ADC.east) -- (Baseband.west);
+ \end{circuitikz}
+ \end{adjustbox}
+ \caption{Zero-\acs{IF} receiver}
+\end{figure}
+
+\begin{itemize}
+ \item The \ac{RF} is directly converted to the baseband close to a frequency of zero. The baseband can be seen as a \ac{IF} of zero.
+ \item The \ac{LO} is tuned directly to the \ac{RF} frequency.
+ \item The receiver architecture is called \index{zero-IF} \textbf{zero-\acs{IF}} or \index{direct conversion receiver} \textbf{direct conversion receiver}.
+\end{itemize}
+
+This special design requires a careful consideration. Assume that the \ac{RF} signal is monochromatic. The baseband signal $x_B(t)$ is:
+\begin{equation}
+ x_B(t) = \underbrace{\hat{X}_{RF} \cos\left(\omega_{RF} t + \varphi_{RF}\right)}_{= x_{RF}(t)} \cdot \underbrace{\cos\left(\omega_{RF} t\right)}_{= x_{RF}(t) \text{ with } \omega_{LO} = \omega_{RF}}
+\end{equation}
+
+\begin{itemize}
+ \item If the phase shift $\varphi_{RF}$ of the \ac{RF} signal is $0$, the \ac{RF} signal can be received without problems.
+ \item If the phase shift $\varphi_{RF}$ of the \ac{RF} signal is $\pm \frac{\pi}{2}$, the \ac{RF} signal is orthogonal to the \ac{LO} signal. The baseband signal be zero. The \ac{RF} signal cannot be received.
+ \item Values of $0 < \varphi_{RF} < \frac{\pi}{2}$ reduce the amplitude of the baseband signal, which decreases the \ac{SNR}.
+\end{itemize}
+
+\begin{proof}{}
+ \begin{equation*}
+ \begin{split}
+ x_B(t) &= \hat{X}_{RF} \cos\left(\omega_{RF} t + \frac{\pi}{2}\right) \cdot \cos\left(\omega_{RF} t\right) \\
+ & \quad \text{Fourier transform} \\
+ \underline{X}_B\left(j\omega\right) &= \hat{X}_{RF} \pi^2 \left( e^{j \frac{\pi}{2}} \delta\left(\omega-\omega_{RF}\right) + e^{-j \frac{\pi}{2}} \delta\left(\omega+\omega_{RF}\right) \right) * \left( \delta\left(\omega-\omega_{RF}\right) + \delta\left(\omega+\omega_{RF}\right) \right) \\
+ &= \hat{X}_{RF} \pi^2 \left( \underbrace{e^{j \frac{\pi}{2}} \delta\left(\omega\right) + e^{-j \frac{\pi}{2}} \delta\left(\omega\right)}_{\text{Baseband signal at zero \acs{IF}}} + \underbrace{e^{j \frac{\pi}{2}} \delta\left(\omega-2\omega_{RF}\right) + e^{-j \frac{\pi}{2}} \delta\left(\omega+2\omega_{RF}\right)}_{\text{Eliminated by the \ac{LPF}}} \right) \\
+ &= \hat{X}_{RF} \pi^2 \left( \underbrace{j \delta\left(\omega\right) - j \delta\left(\omega\right)}_{= 0} \right) \\
+ &= 0
+ \end{split}
+ \end{equation*}
+
+ If the \ac{RF} and \ac{LO} signals are orthogonal, no signal will be present in a band-limited (\ac{LPF}) baseband signal.
+\end{proof}
+
+The problem is that the phase of the \ac{RF} $\varphi_{RF}$ is not known. The phase of the \ac{LO} must be aligned to the \ac{RF} signal phase to reduce $\varphi_{RF}$ to zero.
+
+To solve this issue, the mixer principle of the zero-\acs{IF} mixer must be adapted.
+\begin{itemize}
+ \item The \ac{RF} signal is split and fed into two mixer branches.
+ \item One of the mixers multiplies the \ac{RF} signal with the \ac{LO} signal.
+ \item The other mixer multiplies the \ac{RF} signal with a $\frac{\pi}{2}$-phase-shifted copy of the \ac{LO} signal.
+ \item The \ac{LO} signals of the mixers are orthogonal.
+ \item Due to the orthogonality of the \ac{LO} signals, all variations of the \ac{RF} signal phase shift $\varphi_{RF}$ can be reliably received without \ac{SNR} degradation.
+\end{itemize}
+This mixer architecture is called \index{coherent mixer} \textbf{coherent}.
+
+\begin{figure}[H]
+ \centering
+ \begin{adjustbox}{scale=0.8}
+ \begin{circuitikz}
+ \node[mixer](MixI) at(5cm,3cm) {};
+ \node[mixer](MixQ) at(5cm,-3cm) {};
+ \node[oscillator](LO) at(3cm,0cm){};
+ \node[block, draw, minimum height=8cm](DSP) at(11cm,0cm){Digital\\ signal\\ processing};
+
+ \draw (LO.south) node[below,align=center,yshift=-3mm]{\acs{LO}\\ $\omega_{LO} = \omega_{RF}$};
+ \draw (MixI.north) node[above,align=center,yshift=1cm]{In-phase (\acs{I}) branch};
+ \draw (MixQ.south) node[below,align=center,yshift=-1cm]{Quadrature (\acs{Q}) branch};
+
+ \draw (0cm,0cm) node[left,align=right]{Input\\ signal} to[short,o-*] (1cm,0cm);
+ \draw (1cm,0cm) to[short] ([xshift=-4cm] MixI) to[lowpass] (MixI.west);
+ \draw (1cm,0cm) to[short] ([xshift=-4cm] MixQ) to[lowpass] (MixQ.west);
+
+ \draw (LO.east) to[short,-*] (5cm,0cm);
+ \draw (5cm,0cm) to[short] (MixI.south);
+ \draw (5cm,0cm) to[phaseshifter,l=$\SI{90}{\degree}$] (MixQ.north);
+
+ \draw (MixI.east) to[amp] ++(2cm,0cm) to[adc] ([yshift=3cm] DSP.west);
+ \draw (MixQ.east) to[amp] ++(2cm,0cm) to[adc] ([yshift=-3cm] DSP.west);
+ \end{circuitikz}
+ \end{adjustbox}
+ \caption{Coherent mixer suitable for zero-\acs{IF} receiver architectures (IQ demodulator)}
+ \label{fig:ch05:iq_down_circuit}
+\end{figure}
+
+The coherent mixer, also called \index{IQ demodulator} \textbf{IQ demodulator}, (Figure \ref{fig:ch05:iq_down_circuit}) consists of two branches (also called paths):
+\begin{itemize}
+ \item The \ac{I} path mixes the original \ac{LO} signal to the replica of the \ac{RF} signal.
+ \item The \ac{Q} path mixes the $\frac{\pi}{2}$-phase-shifted \ac{LO} signal to the replica of the \ac{RF} signal.
+\end{itemize}
+The coherent mixer is capable of receiving all variations of the \ac{RF} signal phase shift $\varphi_{RF}$, while the amplitude is kept intact.
+
+\begin{excursus}{Non-coherent demodulation}
+ \todo{Non-coherent demodulation}
+\end{excursus}
+
+\begin{fact}
+ Pure \ac{AM} signals can be demodulated either coherently or non-coherently. \ac{PM} signals or mixed \ac{AM} and \ac{PM} signals require a coherent demodulation, because a non-coherent demodulation drops the signal phase.
+\end{fact}
\subsection{Mixing Complex-Valued Baseband Signals}
-\todo{IQ Modulator}
+\subsubsection{Down-Conversion}
+
+A coherent mixer (Figure \ref{fig:ch05:iq_down_circuit}) retains the phase of the \ac{RF} signal. The phase information is coded into the \ac{I} and \ac{Q} parts of the baseband signal.
+
+Let's consider the \ac{RF} signal $x_{RF}(t) \TransformHoriz \underline{X}_{RF}\left(j\omega\right)$ contains the information whose power is concentrated close to the \ac{RF} frequency $\omega_{RF}$. $\underline{X}_{RF}\left(j\omega\right)$ devolves into a positive and negative frequency part.
+\begin{equation}
+ \underline{X}_{RF}\left(j\omega\right) = \begin{cases}
+ \underline{X}_{RF}^{+}\left(j\omega\right) & \quad \text{ if } \omega \geq 0 \\
+ \underline{X}_{RF}^{-}\left(j\omega\right) & \quad \text{ if } \omega \leq 0
+ \end{cases}
+\end{equation}
+$x_{RF}(t)$ is real-valued. Therefore, $\underline{X}_{RF}^{+}\left(j\omega\right) = \overline{\underline{X}_{RF}^{-}\left(-j\omega\right)}$. So, both the positive and negative part in fact carry the same information.
+
+Now, the \ac{RF} signal is mixed down to the baseband by a coherent mixer.
+\begin{itemize}
+ \item The \ac{I} path of the coherent mixer (Figure \ref{fig:ch05:iq_down_circuit}):
+ \begin{equation}
+ \begin{split}
+ x_{B,I}(t) &= x_{RF}(t) \cdot \cos\left(\omega_{RF} t\right) \\
+ &\quad \text{Fourier transform:} \\
+ \underline{X}_{B,I}\left(j\omega\right) &= \underline{X}_{RF}\left(j\omega\right) * \left(\delta\left(\omega-\omega_{RF}\right) + \delta\left(\omega+\omega_{RF}\right)\right) \pi \\
+ &= \pi \left(\underline{X}_{RF}\left(j\omega-j\omega_{RF}\right) + \underline{X}_{RF}\left(j\omega+j\omega_{RF}\right)\right) \\
+ &= \pi \left(\underbrace{\underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right) + \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right)}_{\text{\acs{I} component of the baseband signal}} \right. \\ &\qquad + \left. \underbrace{\underline{X}_{RF}^{+}\left(j\omega-j\omega_{RF}\right) + \underline{X}_{RF}^{-}\left(j\omega+j\omega_{RF}\right)}_{\text{Mirror frequencies close to $\pm 2 \omega_{RF}$, eliminated by \acs{LPF}}} \right) \\
+ &\quad \text{After the \acs{LPF}:} \\
+ &= \pi \left(\underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right) + \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right) \right)
+ \end{split}
+ \end{equation}
+ \item The \ac{Q} path of the coherent mixer (Figure \ref{fig:ch05:iq_down_circuit}):
+ \begin{equation}
+ \begin{split}
+ x_{B,Q}(t) &= x_{RF}(t) \cdot \underbrace{\cos\left(\omega_{RF} t + \frac{\pi}{2}\right)}_{= \sin\left(\omega_{RF} t\right)} \\
+ &\quad \text{Fourier transform:} \\
+ \underline{X}_{B,Q}\left(j\omega\right) &= \underline{X}_{RF}\left(j\omega\right) * \left(e^{j\frac{\pi}{2}} \delta\left(\omega-\omega_{RF}\right) + e^{-j\frac{\pi}{2}} \delta\left(\omega+\omega_{RF}\right)\right) \pi \\
+ &= \pi \left(e^{j\frac{\pi}{2}}\underline{X}_{RF}\left(j\omega-j\omega_{RF}\right) + e^{-j\frac{\pi}{2}}\underline{X}_{RF}\left(j\omega+j\omega_{RF}\right)\right) \\
+ &= \pi \left(\underbrace{e^{j\frac{\pi}{2}} \underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right) + e^{-j\frac{\pi}{2}} \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right)}_{\text{\acs{I} component of the baseband signal}} \right. \\ &\qquad + \left. \underbrace{e^{j\frac{\pi}{2}} \underline{X}_{RF}^{+}\left(j\omega-j\omega_{RF}\right) + e^{-j\frac{\pi}{2}} \underline{X}_{RF}^{-}\left(j\omega+j\omega_{RF}\right)}_{\text{Mirror frequencies close to $\pm 2 \omega_{RF}$, eliminated by \acs{LPF}}} \right) \\
+ &\quad \text{After the \acs{LPF}:} \\
+ &= \pi \left(e^{j\frac{\pi}{2}} \underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right) + e^{-j\frac{\pi}{2}} \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right) \right) \\
+ &= j \pi \left( \underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right) - \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right) \right)
+ \end{split}
+ \end{equation}
+ \item Both $\underline{X}_{B,I}\left(j\omega\right)$ and $\underline{X}_{B,Q}\left(j\omega\right)$ are Hermitian and fulfil the symmetry rules.
+ \item Thus, both $x_{B,I}(t)$ and $x_{B,Q}(t)$ are real-valued signals. \textit{Anything else would make no sense, because the \ac{I} and \ac{Q} components exist as physical signals at the mixer outputs.}
+ \item Now, the \ac{I} and \ac{Q} components are composed to a complex-valued signal:
+ \begin{equation}
+ \underline{x}_B(t) = x_{B,I}(t) + j \cdot x_{B,Q}(t)
+ \end{equation}
+ \item The composition can be thought of interpreting the \ac{I} component $x_{B,I}(t)$ as the real part of $\underline{x}_B(t)$ and the \ac{Q} component $x_{B,Q}(t)$ as the imaginary part of $\underline{x}_B(t)$. This interpretation usually happens in the digital signal processing.
+ \item The effect of this re-interpretation becomes clear in the frequency-domain:
+ \begin{equation}
+ \begin{split}
+ \underline{X}_{B}\left(j\omega\right) &= \mathcal{F}\left\{\underline{x}_B(t)\right\} = \mathcal{F}\left\{x_{B,I}(t) + j \cdot x_{B,Q}(t)\right\} \\
+ &= \mathcal{F}\left\{x_{B,I}(t)\right\} + j \cdot \mathcal{F}\left\{\cdot x_{B,Q}(t)\right\} \\
+ &= \pi \left(\underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right) + \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right) \right) \\ & \qquad + \underbrace{j^2}_{= -1} \pi \left( \underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right) - \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right) \right) \\
+ &= \pi \left( \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right) + \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right) \right. \\ & \qquad + \left. \underbrace{\underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right) - \underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right)}_{= 0} \right) \\
+ &= 2 \pi \underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right)
+ \end{split}
+ \end{equation}
+ \item $\underline{X}_{B}\left(j\omega\right)$ is not Hermitian. $\underline{x}_B(t)$ is complex-valued.
+ \item In $\underline{X}_{B}\left(j\omega\right)$ the negative part of the baseband signal $\underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right)$ is completely eliminated.
+ \item In contrast to that, both $\underline{X}_{B,I}\left(j\omega\right)$ and $\underline{X}_{B,Q}\left(j\omega\right)$ contained the two equivalent parts $\underline{X}_{RF}^{+}\left(j\omega+j\omega_{RF}\right)$ and $\underline{X}_{RF}^{-}\left(j\omega-j\omega_{RF}\right)$.
+\end{itemize}
+
+\textbf{In fact, the band around the \ac{RF} frequency $\omega_{RF}$ is shifted down to zero-\acs{IF} as a whole without losing the information contained. This is the reason, why the phase information of the \ac{RF} signal is retained.}
+
+
+\begin{figure}[H]
+ \centering
+
+ \subfloat[The \ac{RF} signal and \acs{LO} signal in the frequency-domain] {
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.1\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$\omega$},
+ ylabel={$|\underline{X}_{RF}|$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-4.6,
+ xmax=4.6,
+ ymin=0,
+ ymax=1.2,
+ xtick={-1.9, 0, 1.9},
+ xticklabels={$-\omega_{RF}$, $0$, $\omega_{RF}$},
+ ytick={0},
+ ]
+ \draw[red, thick] (axis cs:-1.8,0) -- (axis cs:-2,0.7) node[above left,align=right]{$\underline{X}_{RF}^{-}$} -- (axis cs:-2.5,0);
+ \draw[red, thick] (axis cs:1.8,0) -- (axis cs:2,0.7) node[above right,align=left]{$\underline{X}_{RF}^{+}$} -- (axis cs:2.5,0);
+
+ \draw[-latex, blue, very thick] (axis cs:-1.9,0) -- (axis cs:-1.9,1) node[above,align=center]{\acs{LO}};
+ \draw[-latex, blue, very thick] (axis cs:1.9,0) -- (axis cs:1.9,1) node[above,align=center]{\acs{LO}};
+ \end{axis}
+ \end{tikzpicture}
+ }
+
+ \subfloat[\acs{I} component of the baseband signal in the frequency-domain] {
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.12\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$\omega$},
+ ylabel={$\Re\left\{\underline{X}_{B,I}\right\}$ (real)},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-4.6,
+ xmax=4.6,
+ ymin=0,
+ ymax=1.2,
+ xtick={-3.8, -1.9, 0, 1.9, 3.8},
+ xticklabels={$-2\omega_{RF}$, $-\omega_{RF}$, $0$, $\omega_{RF}$, $2\omega_{RF}$},
+ ytick={0},
+ ]
+ % X-
+ \draw[red, dashed, thick] (axis cs:-3.7,0) -- (axis cs:-3.9,0.7) node[above right,align=left]{Eliminated by \acs{LPF}} -- (axis cs:-4.4,0);
+ \draw[red, thick] (axis cs:0.1,0) -- (axis cs:-0.1,0.7) -- (axis cs:-0.6,0);
+
+ % X+
+ \draw[red, dashed, thick] (axis cs:3.7,0) -- (axis cs:3.9,0.7) node[above left,align=right]{Eliminated by \acs{LPF}} -- (axis cs:4.4,0);
+ \draw[red, thick] (axis cs:-0.1,0) -- (axis cs:0.1,0.7) -- (axis cs:0.6,0);
+ \end{axis}
+ \end{tikzpicture}
+ }
+
+ \subfloat[\acs{Q} component of the baseband signal in the frequency-domain] {
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.2\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$\omega$},
+ ylabel={$\Im\left\{\underline{X}_{B,Q}\right\}$ (imaginary)},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-4.6,
+ xmax=4.6,
+ ymin=-1.2,
+ ymax=1.2,
+ xtick={-3.8, -1.9, 0, 1.9, 3.8},
+ xticklabels={$-2\omega_{RF}$, $-\omega_{RF}$, $0$, $\omega_{RF}$, $2\omega_{RF}$},
+ ytick={0},
+ ]
+ % X-
+ \draw[red, dashed, thick] (axis cs:-3.7,0) -- (axis cs:-3.9,-0.7) node[below right,align=left]{Eliminated by \acs{LPF}} -- (axis cs:-4.4,0);
+ \draw[red, thick] (axis cs:0.1,0) -- (axis cs:-0.1,0.7) -- (axis cs:-0.6,0);
+
+ % X+
+ \draw[red, dashed, thick] (axis cs:3.7,0) -- (axis cs:3.9,0.7) node[above left,align=right]{Eliminated by \acs{LPF}} -- (axis cs:4.4,0);
+ \draw[red, thick] (axis cs:-0.1,0) -- (axis cs:0.1,-0.7) -- (axis cs:0.6,0);
+ \end{axis}
+ \end{tikzpicture}
+ }
+
+ \subfloat[Complex-valued baseband signal in the frequency-domain] {
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.1\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$\omega$},
+ ylabel={$|\underline{X}_{B}|$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-4.6,
+ xmax=4.6,
+ ymin=0,
+ ymax=1.2,
+ xtick={-3.8, -1.9, 0, 1.9, 3.8},
+ xticklabels={$-2\omega_{RF}$, $-\omega_{RF}$, $0$, $\omega_{RF}$, $2\omega_{RF}$},
+ ytick={0},
+ ]
+ \draw[red, thick] (axis cs:-0.1,0) -- (axis cs:0.1,0.7) -- (axis cs:0.6,0);
+ \end{axis}
+ \end{tikzpicture}
+ }
+
+ \caption{Coherent down-conversion}
+ \label{fig:ch05:iq_down_freqdomain}
+\end{figure}
+
+\subsubsection{Up-Conversion}
+
+The process can be reversed.
+\begin{itemize}
+ \item A complex-valued baseband signal can be mixed to a real-valued \ac{RF} signal.
+ \item The spectrum of the baseband signal is shifted up to $\omega_{RF}$ as a whole without losing any information.
+ \item The device mixing the complex baseband up to the \ac{RF} band is called \index{IQ modulator} \textbf{IQ modulator}.
+ \item The \emph{IQ modulator} is the counterpart of the \emph{IQ demodulator} (\emph{coherent mixer}).
+\end{itemize}
+
+\begin{figure}[H]
+ \centering
+ \begin{adjustbox}{scale=0.8}
+ \begin{circuitikz}
+ \node[block, draw, minimum height=8cm](DSP) at(0cm,0cm){Digital\\ signal\\ processing};
+ \node[mixer](MixI) at([shift={(6cm,3cm)}] DSP.east) {};
+ \node[mixer](MixQ) at([shift={(6cm,-3cm)}] DSP.east) {};
+ \node[oscillator](LO) at([shift={(4cm,0cm)}] DSP.east){};
+ \node[adder](Add) at([shift={(10cm,0cm)}] DSP.east){};
+
+ \draw (LO.south) node[below,align=center,yshift=-3mm]{\acs{LO}\\ $\omega_{LO} = \omega_{RF}$};
+ \draw (MixI.north) node[above,align=center,yshift=1cm]{In-phase (\acs{I}) branch};
+ \draw (MixQ.south) node[below,align=center,yshift=-1cm]{Quadrature (\acs{Q}) branch};
+
+ \draw (LO.east) to[short,-*] ([shift={(6cm,0cm)}] DSP.east);
+ \draw ([shift={(6cm,0cm)}] DSP.east) to[short] (MixI.south);
+ \draw ([shift={(6cm,0cm)}] DSP.east) to[phaseshifter,l=$\SI{90}{\degree}$] (MixQ.north);
+
+ \draw ([shift={(0cm,3cm)}] DSP.east) to[dac] ++(2cm,0cm) to[lowpass] ++(2cm,0cm) to[amp] (MixI.west);
+ \draw ([shift={(0cm,-3cm)}] DSP.east) to[dac] ++(2cm,0cm) to[lowpass] ++(2cm,0cm) to[amp] (MixQ.west);
+
+ \draw[-latex] (MixI.east) to[lowpass] ++(2cm,0cm) -| (Add.north);
+ \draw[-latex] (MixQ.east) to[lowpass] ++(2cm,0cm) -| (Add.south);
+ \draw[-latex] (Add.east) -- ++(1cm,0cm) node[right,align=left]{\acs{RF}\\ signal};
+ \end{circuitikz}
+ \end{adjustbox}
+ \caption{IQ modulator mixing up a complex-valued zero-\acs{IF} baseband}
+ \label{fig:ch05:iq_up_circuit}
+\end{figure}
+\begin{figure}[H]
+ \centering
+
+ \subfloat[Complex-valued baseband signal and \acs{LO} signal in the frequency-domain] {
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.1\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$\omega$},
+ ylabel={$|\underline{X}_{B}|$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-3,
+ xmax=3,
+ ymin=0,
+ ymax=1.2,
+ xtick={-1.9, 0, 1.9},
+ xticklabels={$-\omega_{RF}$, $0$, $\omega_{RF}$},
+ ytick={0},
+ ]
+ \draw[red, thick] (axis cs:-0.1,0) -- (axis cs:0.1,0.7) -- (axis cs:0.6,0);
+
+ \draw[-latex, blue, very thick] (axis cs:-1.9,0) -- (axis cs:-1.9,1) node[above,align=center]{\acs{LO}};
+ \draw[-latex, blue, very thick] (axis cs:1.9,0) -- (axis cs:1.9,1) node[above,align=center]{\acs{LO}};
+ \end{axis}
+ \end{tikzpicture}
+ }
+
+ \subfloat[The \ac{RF} signal in the frequency-domain] {
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.1\textheight},
+ width=0.9\linewidth,
+ scale only axis,
+ xlabel={$\omega$},
+ ylabel={$|\underline{X}_{RF}|$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ legend pos=north east,
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ },
+ xmin=-3,
+ xmax=3,
+ ymin=0,
+ ymax=1.2,
+ xtick={-1.9, 0, 1.9},
+ xticklabels={$-\omega_{RF}$, $0$, $\omega_{RF}$},
+ ytick={0},
+ ]
+ \draw[red, thick] (axis cs:-1.8,0) -- (axis cs:-2,0.7) -- (axis cs:-2.5,0);
+ \draw[red, thick] (axis cs:1.8,0) -- (axis cs:2,0.7) -- (axis cs:2.5,0);
+ \end{axis}
+ \end{tikzpicture}
+ }
+
+ \caption{Up-conversion of a complex-valued baseband signal}
+ \label{fig:ch05:iq_up_freqdomain}
+\end{figure}
+
+The \ac{RF} signal is always real-valued and contains the basebased shifted as a whole (including its non-symmetric positive and negative parts) to the \ac{RF} frequency $\omega_{RF}$.
+
+\begin{proof}{}
+ The complex-valued baseband signal $\underline{x}_{B}(t)$ can be decomposed into its real and imaginary values, the \ac{I} and \ac{Q} components.
+ \begin{equation}
+ \underline{x}_{B}(t) = x_{B,I}(t) + j \cdot x_{B,Q}(t)
+ \end{equation}
+ In the frequency-domain:
+ \begin{equation}
+ \underline{X}_{B}\left(j\omega\right) = \underline{X}_{B,I}\left(j\omega\right) + j \cdot \underline{X}_{B,Q}\left(j\omega\right)
+ \label{eq:ch05:baseband_tx_freqdom}
+ \end{equation}
+
+ Both $\underline{X}_{B,I}\left(j\omega\right)$ and $\underline{X}_{B,Q}\left(j\omega\right)$ must be Hermitian (real-valued in time-domain) and can be decomposed into:
+ \begin{subequations}
+ \begin{align}
+ \underline{X}_{B,I}\left(j\omega\right) &= \begin{cases}
+ \underline{X}_{B,I}^{+}\left(j\omega\right) & \quad \text{ if } \omega \geq 0 \\
+ \underline{X}_{B,I}^{-}\left(j\omega\right) & \quad \text{ if } \omega \leq 0
+ \end{cases} \\
+ \underline{X}_{B,Q}\left(j\omega\right) &= \begin{cases}
+ \underline{X}_{B,Q}^{+}\left(j\omega\right) & \quad \text{ if } \omega \geq 0 \\
+ \underline{X}_{B,Q}^{-}\left(j\omega\right) & \quad \text{ if } \omega \leq 0
+ \end{cases}
+ \end{align}
+ \end{subequations}
+
+ Following conditions must be true to fulfil \eqref{eq:ch05:baseband_tx_freqdom} and the symmetry rules of $\underline{X}_{B,I}\left(j\omega\right)$ and $\underline{X}_{B,Q}\left(j\omega\right)$:
+ \begin{subequations}
+ \begin{align}
+ \underline{X}_{B,I}^{+}\left(j\omega\right) = -j \underline{X}_{B,Q}^{+}\left(j\omega\right) &= \begin{cases}
+ \frac{1}{2} \underline{X}_{B}\left(j\omega\right) & \quad \text{ if } \omega \geq 0 \\
+ 0 & \quad \text{ if } \omega \leq 0
+ \end{cases} \\
+ \underline{X}_{B,I}^{-}\left(j\omega\right) = j \underline{X}_{B,Q}^{-}\left(j\omega\right) &= \begin{cases}
+ 0 & \quad \text{ if } \omega \geq 0 \\
+ \frac{1}{2} \overline{\underline{X}_{B}\left(j\omega\right)} & \quad \text{ if } \omega \leq 0
+ \end{cases}
+ \end{align}
+ \end{subequations}
+\end{proof}
+
\section{Digital Modulation Techniques}
\subsection{Amplitude-Shift Keying}
@@ -905,10 +1610,12 @@ So, the input signal's spectrum consists of a positive and a negative part:
\todo{signal chain: S/P -> constellation diagram -> iFFT -> IQ}
-\subsection{Coherent and Non-Coherent Demodulation}
+%\subsection{Coherent and Non-Coherent Demodulation}
\subsection{Inter-Symbol Interference}
+\todo{Cyclic Prefixes? No -> OFDM}
+
\subsection{Synchronization 2: Carrier Recovery}
\todo{Frequency and phase offset}
diff --git a/common/acronym.tex b/common/acronym.tex
index 06d52d2..c605c5a 100644
--- a/common/acronym.tex
+++ b/common/acronym.tex
@@ -69,6 +69,7 @@
\acro{HF}{high frequency}
\acro{HPF}{high pass filter}
\acro{HTTP}{Hypertext Transfer Protocol}
+ \acro{I}{in-phase}
\acro{IC}{integrated circuit}
\acro{ID}{identification}
\acro{IEEE}{Institute of Electrical and Electronics Engineers}
@@ -125,6 +126,7 @@
\acro{PPDU}{physical layer protocol data unit}
\acro{PSDU}{physical layer service data unit}
\acro{PSK}{phase-shift keying}
+ \acro{Q}{quadrature}
\acro{QAM}{quadrature amplitude modulation}
\acro{QED}{quod erat demonstrandum}
\acro{QOS}{quality of service}