summaryrefslogtreecommitdiff
path: root/chapter02/content_ch02.tex
diff options
context:
space:
mode:
authorPhilipp Le <philipp-le-prviat@freenet.de>2020-05-05 01:21:39 +0200
committerPhilipp Le <philipp-le-prviat@freenet.de>2021-03-04 01:16:19 +0100
commit31693fd41130eb884f3c74979af6331eee3adcf8 (patch)
treeec10ca53abb5744bceaa9a81242d0fcde766958a /chapter02/content_ch02.tex
parent40902b30d01ff26deba8af6c7235fd87975c8f75 (diff)
downloaddcs-lecture-notes-31693fd41130eb884f3c74979af6331eee3adcf8.zip
dcs-lecture-notes-31693fd41130eb884f3c74979af6331eee3adcf8.tar.gz
dcs-lecture-notes-31693fd41130eb884f3c74979af6331eee3adcf8.tar.bz2
WIP: Chapter 2: Spectrum
Diffstat (limited to 'chapter02/content_ch02.tex')
-rw-r--r--chapter02/content_ch02.tex140
1 files changed, 140 insertions, 0 deletions
diff --git a/chapter02/content_ch02.tex b/chapter02/content_ch02.tex
index 0105403..071400c 100644
--- a/chapter02/content_ch02.tex
+++ b/chapter02/content_ch02.tex
@@ -362,6 +362,132 @@ It is based on the orthogonality relation:
\subsection{Amplitude and Phase Spectra}
+Let's consider the complex-valued Fourier series $\underline{x_p}(t)$ \eqref{eq:ch02:fourier_series_cmplx}. The coefficients $\underline{c}_n$ are phasors. Its absolute value (amplitude) $|\underline{c}_n|$ and argument (phase) $\arg\left(\underline{c}_n\right)$ can now be plotted over the index $n$. The index $n \in \mathbb{Z}$ is discrete. Thus, the resulting plots are value-discrete in the dimension of $n$. In contrast, the amplitudes and phases are value-continuous.
+
+\begin{definition}{Spectrum of a period signal}
+ \begin{itemize}
+ \item The plot of the amplitude $|\underline{c}_n|$ is called \index{amplitude spectrum} \textbf{amplitude spectrum}.
+ \item The plot of the phase $\arg\left(\underline{c}_n\right)$ is called \index{phase spectrum} \textbf{phase spectrum}.
+ \item When referring to the \index{spectrum} \textbf{spectrum}, generally both amplitude and phase, or their complex-valued representation of $\underline{c}_n$ is meant.
+ \end{itemize}
+\end{definition}
+
+\begin{fact}
+ The index $n \in \mathbb{Z}$ is discrete. The plots of the spectrum are value-discrete in the dimension of $n$.
+\end{fact}
+
+When considering a complex-valued signal $\underline{x_p}(t)$, both amplitude and phase can take any value, with following constraints:
+\begin{itemize}
+ \item The amplitude $|\underline{c}_n|$ is always a positive real number.
+ \item The phase $\arg\left(\underline{c}_n\right)$ a real number from the interval $[-\pi, +\pi]$.
+\end{itemize}
+
+If the signal $\underline{x_p}(t) = x_p(t)$ is real-valued, i.e., $\Im\left\{\underline{c}_n(t)\right\} = 0$, the values of $\underline{c}_n$ are even more constrained by the \index{spectrum!symmetry rules} \textbf{symmetry rules}:
+\begin{itemize}
+ \item The coefficients $\underline{c}_n \in \mathbb{C}$ are still complex-valued phasors.
+ \item But, the coefficients $\underline{c}_n$ show a special symmetry.
+ \begin{itemize}
+ \item The amplitude spectrum $|\underline{c}_n|$ is an \underline{even function}. It is symmetric with respect to the $y$-axis.
+ \item The phase spectrum $\arg\left(\underline{c}_n\right)$ is an \underline{odd function}. It is symmetric with respect to the origin.
+ \item As a consequence, the phase of $\arg\left(\underline{c}_0\right)$ at $n = 0$ must be either $0$ or $+\pi$. Note that, $+\pi$ is identical to $-\pi$ in the complex plane. Thus, $-\pi$ is valid, too, but not distinct from $+\pi$. This phase is the sign of the \ac{DC} bias: $\arg\left(\underline{c}_0\right) = 0$ means positive \ac{DC} bias and $\arg\left(\underline{c}_0\right) = \pi$ means negative \ac{DC} bias.
+ \end{itemize}
+\end{itemize}
+These symmetry rules apply for \underline{all} real-valued signals $\underline{x_p}(t) = x_p(t) \in \mathbb{R}$. The symmetry rules ensure that the mono-chromatic components of the Fourier series \eqref{eq:ch02:fourier_series_cmplx} sum up to a real value at each time instance $t \in \mathbb{R}$.
+
+The symmetry rules do \underline{not} apply for complex-valued signals $\underline{x_p}(t) \in \mathbb{C}$.
+
+\begin{figure}[H]
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.25\textheight},
+ width=0.6\linewidth,
+ scale only axis,
+ xlabel={$n$},
+ ylabel={$|\underline{c}_n|$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ axis lines=left,
+ legend pos=north east,
+ xmin=-4,
+ xmax=4,
+ ymin=0,
+ ymax=3,
+ xtick={-3, -2, ..., 3},
+ ytick={0, 0.5, ..., 2.5},
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ }
+ ]
+ \addplot[red, thick] coordinates {(-3, 0) (-3, 2.0)};
+ \addplot[red, thick] coordinates {(-2, 0) (-2, 0.4)};
+ \addplot[red, thick] coordinates {(-1, 0) (-1, 1.6)};
+ \addplot[red, thick] coordinates {(0, 0) (0, 1.1)};
+ \addplot[red, thick] coordinates {(1, 0) (1, 1.6)};
+ \addplot[red, thick] coordinates {(2, 0) (2, 0.4)};
+ \addplot[red, thick] coordinates {(3, 0) (3, 2.0)};
+ \addplot[only marks, red, thick, mark=o] coordinates {(-3, 2.0) (-2, 0.4) (-1, 1.6) (0, 1.1) (1, 1.6) (2, 0.4) (3, 2.0)};
+ \end{axis}
+ \end{tikzpicture}
+ \caption[Amplitude Spectrum of a multi-frequent signal]{Amplitude Spectrum of a multi-frequent signal. The absolute values (amplitudes) of the coefficients are plotted. The signal $\underline{c}_n$ is actually real-valued ($\Im\left\{\underline{c}_n(t)\right\} = 0$). This leads a symmetry with respect to the $y$-axis. The amplitude spectrum of a real-valued signal is an even function.}
+ \label{fig:ch02:FSeries_Amplitude_Spectrum}
+\end{figure}
+
+\begin{figure}[H]
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[
+ height={0.25\textheight},
+ width=0.6\linewidth,
+ scale only axis,
+ xlabel={$n$},
+ ylabel={$\arg\left(\underline{c}_n\right)$},
+ %grid style={line width=.6pt, color=lightgray},
+ %grid=both,
+ grid=none,
+ axis lines=left,
+ legend pos=north east,
+ xmin=-4,
+ xmax=4,
+ ymin=-4,
+ ymax=4,
+ xtick={-3, -2, ..., 3},
+ ytick={-3.14159, -1.5708, 1.5708, 3.14159},
+ yticklabels={$-\pi\hspace{0.30cm}$, $-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\pi\hspace{0.10cm}$},
+ axis y line=middle,
+ axis x line=middle,
+ every axis x label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=north,
+ },
+ every axis y label/.style={
+ at={(ticklabel* cs:1.05)},
+ anchor=east,
+ }
+ ]
+ \addplot[red, thick] coordinates {(-3, 0) (-3, 3.14159)};
+ \addplot[red, thick] coordinates {(-2, 0) (-2, -0.5)};
+ \addplot[red, thick] coordinates {(-1, 0) (-1, 1.6)};
+ %\addplot[red, thick] coordinates {(0, 0) (0, 0)};
+ \addplot[red, thick] coordinates {(1, 0) (1, -1.6)};
+ \addplot[red, thick] coordinates {(2, 0) (2, 0.5)};
+ \addplot[red, thick] coordinates {(3, 0) (3, -3.14159)};
+ \addplot[only marks, red, thick, mark=o] coordinates {(-3, 3.14159) (-2, -0.5) (-1, 1.6) (0, 0.0) (1, -1.6) (2, 0.5) (3, -3.14159)};
+ \addplot[only marks, blue, mark=x] coordinates {(0, -3.14159) (0, 0.0) (0, 3.14159)};
+ \end{axis}
+ \end{tikzpicture}
+ \caption[Phase Spectrum of a multi-frequent signal]{Phase Spectrum of a multi-frequent signal. The arguments (phases) of the coefficients are plotted. The signal $\underline{c}_n$ is actually real-valued ($\Im\left\{\underline{c}_n(t)\right\} = 0$). This leads a symmetry with respect to the origin. The phase spectrum of a real-valued signal is an odd function. The blue $x$ define the possible phase values of the coefficient $\underline{c}_0$ of the real-valued signal.}
+ \label{fig:ch02:FSeries_Phase_Spectrum}
+\end{figure}
+
\section{Non-Periodic Signals and Fourier Transform}
\subsection{Derivation of The Fourier Transform}
@@ -419,6 +545,20 @@ The inner integral is the \index{Fourier transform} \textbf{Fourier transform}.
\subsection{Amplitude and Phase Spectra}
+The value-continuous complex frequency variable $j \omega$ in the Fourier transforms replaced the value-discrete index $n$ of the Fourier series. Due to their similarity, the constraints for all signals and the \index{spectrum!symmetry rules} \textbf{symmetry rules} for real-valued signals apply analogously.
+
+\begin{itemize}
+ \item The Fourier transform $\underline{X}(j \omega) \in \mathbb{C}$ is always complex-valued, for both real-valued $\underline{x}(t) = x(t) \in \mathbb{R}$ and complex-valued $\underline{x}(t) \in \mathbb{C}$ signals.
+ \item The amplitude $|\underline{X}(j \omega)|$ is always a positive real number.
+ \item The phase $\arg\left(\underline{X}(j \omega)\right)$ a real number from the interval $[-\pi, +\pi]$.
+ \item For real-valued signals $\underline{x}(t) = x(t) \in \mathbb{R}$, but not for complex-valued $\underline{x}(t) \in \mathbb{C}$ signals, following additional constraints (symmetry rules) apply:
+ \begin{itemize}
+ \item The amplitude spectrum $|\underline{X}(j \omega)|$ is an \underline{even function}. It is symmetric with respect to the $y$-axis.
+ \item The phase spectrum $\arg\left(\underline{X}(j \omega)\right)$ is an \underline{odd function}. It is symmetric with respect to the origin.
+ \item As a consequence, the phase of $\arg\left(\underline{X}(0)\right)$ at $j \omega = 0$ must be either $0$ or $+\pi$. Note that, $+\pi$ is identical to $-\pi$ in the complex plane. Thus, $-\pi$ is valid, too, but not distinct from $+\pi$. This phase is the sign of the \ac{DC} bias: $\arg\left(\underline{X}(0)\right) = 0$ means positive \ac{DC} bias and $\arg\left(\underline{X}(0)\right) = \pi$ means negative \ac{DC} bias.
+ \end{itemize}
+\end{itemize}
+
\subsection{Time Domain and Frequency Domain}
\section{Properties of The Fourier Transform}