summaryrefslogtreecommitdiff
path: root/chapter02/content_ch02.tex
diff options
context:
space:
mode:
authorPhilipp Le <philipp-le-prviat@freenet.de>2020-05-16 16:40:39 +0200
committerPhilipp Le <philipp-le-prviat@freenet.de>2021-03-04 01:16:19 +0100
commit36a634d52563d6cb44f0bb8414fa20ca32f55531 (patch)
tree8a3fdb28be9b53cc0e67d7e08b987489cde653ab /chapter02/content_ch02.tex
parentecfae73654182fd1c1042b8bf4543dd84c429566 (diff)
downloaddcs-lecture-notes-36a634d52563d6cb44f0bb8414fa20ca32f55531.zip
dcs-lecture-notes-36a634d52563d6cb44f0bb8414fa20ca32f55531.tar.gz
dcs-lecture-notes-36a634d52563d6cb44f0bb8414fa20ca32f55531.tar.bz2
WIP: Chapter 3 - Spectral Density, Decibel
Diffstat (limited to 'chapter02/content_ch02.tex')
-rw-r--r--chapter02/content_ch02.tex21
1 files changed, 20 insertions, 1 deletions
diff --git a/chapter02/content_ch02.tex b/chapter02/content_ch02.tex
index 745c55d..39134f1 100644
--- a/chapter02/content_ch02.tex
+++ b/chapter02/content_ch02.tex
@@ -353,7 +353,7 @@ Using the orthogonality relations, the coefficients $\tilde{a}_n$ and $\tilde{b}
\begin{subequations}
\begin{align}
\tilde{a}_n &= \frac{\omega_0}{\pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \tilde{x}_p(t) \cdot \cos\left(n \omega_0 t\right) \, \mathrm{d} t \label{eq_ch02_fourier_series_coeff_an} \\
- \tilde{b}_m &= \frac{\omega_0}{\pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \tilde{x}_p(t) \cdot \sin\left(n \omega_0 t\right) \, \mathrm{d} t \label{eq_ch02_fourier_series_coeff_bm}
+ \tilde{b}_m &= \frac{\omega_0}{\pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \tilde{x}_p(t) \cdot \sin\left(m \omega_0 t\right) \, \mathrm{d} t \label{eq_ch02_fourier_series_coeff_bm}
\end{align}
\end{subequations}
@@ -476,6 +476,20 @@ If the signal $\underline{x_p}(t) = x_p(t)$ is real-valued, i.e., $\Im\left\{\un
\end{itemize}
These symmetry rules apply for \underline{all} real-valued signals $\underline{x_p}(t) = x_p(t) \in \mathbb{R}$. The symmetry rules ensure that the mono-chromatic components of the Fourier series \eqref{eq:ch02:fourier_series_cmplx} sum up to a real value at each time instance $t \in \mathbb{R}$.
+\begin{definition}{Hermitian function}
+ A complex-valued function $\underline{f}(t)$ is a \index{Hermitian function} \textbf{Hermitian function} if
+ \begin{equation}
+ \overline{\underline{f}(t)} = \underline{f}(-t)
+ \label{eq:ch02:hermitian}
+ \end{equation}%
+ \nomenclature[Na]{$\overline{\left(\cdot\right)}$}{Complex conjugate of $\left(\cdot\right)$}
+ where $\overline{\left(\cdot\right)}$ denotes the complex conjugate.
+
+ Hermitian function are \index{conjugate symmetric} \textbf{conjugate symmetric}.
+\end{definition}
+
+$\underline{c}_n$ is Hermitian if and only if $\underline{x_p}(t) = x_p(t)$ is real-valued.
+
The symmetry rules do \underline{not} apply for complex-valued signals $\underline{x_p}(t) \in \mathbb{C}$.
\begin{figure}[H]
@@ -706,6 +720,11 @@ The value-continuous complex frequency variable $j \omega$ in the continuous Fou
\end{itemize}
\end{itemize}
+Analogue to the Fourier series, the Fourier transform $\underline{X}(j \omega)$ is Hermitian \eqref{eq:ch02:hermitian} if and only if $\underline{x}(t) = x(t)$ is real-valued.
+\begin{equation}
+ \overline{\underline{X}(j \omega)} = \underline{X}(-j \omega) \qquad \forall \; \mathcal{F}^{-1}\left\{\underline{X}(j \omega)\right\} \in \mathbb{R}
+\end{equation}
+
Let's investigate the \index{rectangular function} rectangular function from Figure \ref{fig:ch02:rect_function}. It is defined as:
\begin{equation}
\mathrm{rect}(t) = \begin{cases}